精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求的定义域;

2)判断的奇偶性并予以证明;

3)求满足的解集.

【答案】12为奇函数;证明见解析(3)当时,的解集是.时,的解集是

【解析】

1)根据函数的解析式有意义,得到不等式组,即可求解函数的定义域;

2)根据函数奇偶性的定义,即可判定函数的奇偶性,得到结论;

3)由,得到,根据对数函数的单调性,分类讨论,即可求解.

1)由题意,函数

根据对数函数的性质,可得函数满足,解得

所以的定义域为.

2)由(1)知的定义域为,关于原点对称,

,所以函数为奇函数.

3)由,即

时,在定义域是增函数,,解得

时,在定义域内是减函数,所以,解得

综上可得:当时,的解集是

时,的解集是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnxax)有两个极值点,则实数a的取值范围是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)

分数

甲班频数

乙班频数

(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?

甲班

乙班

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.

参考公式:,其中

临界值表

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是正形,的中点.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.

1)写出曲线的普通方程和直线的直角坐标方程;

2)若直线与曲线相交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下、左、右四个顶点分别为x轴正半轴上的某点满足.

(1)求椭圆的方程;

(2)设该椭圆的左、右焦点分别为,点在圆上,且在第一象限,过作圆的切线交椭圆于,求证:△的周长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子中有红、黄、蓝、绿四个小球,有放回地从中任取一个小球,将“三次抽取后,红色小球,黄色小球都取到”记为事件M,用随机模拟的方法估计事件M发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表红、黄、蓝、绿四个小球,以每三个随机数为一组,表示取小球三次的结果,经随机模拟产生了以下18组随机数:

110

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件M发生的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M过点且与直线相切.

(1)求动圆圆心M的轨迹C的方程;

(2)斜率为的直线l经过点且与曲线C交于AB两点,线段AB的中垂线交x轴于点N,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现准备将8本相同的书全部分配给5个不同的班级,其中甲、乙两个班级每个班级至少2本,其它班级允许1本也没有,则不同的分配方案共有(

A.60B.70C.82D.92

查看答案和解析>>

同步练习册答案