精英家教网 > 高中数学 > 题目详情
10.若实数x,y满足$\left\{\begin{array}{l}{y≥0}\\{x-2y≥0}\\{x+y≤5}\end{array}\right.$,则x+2y的最小值是0.

分析 先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,即可求出z=x+2y的最小值.

解答 解:依题意作出可行性区域,
标函数z=x+2y可看做斜率为-$\frac{1}{2}$的动直线在y轴上的纵截距.
数形结合可知,当动直线过点O时,
目标函数值最小z=0+0=0
故答案为:0.

点评 本题主要考查了线性规划的思想和方法,二元一次不等式组表示平面区域,数形结合的思想方法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.数列{an}的各项均为正数,a1=2,a2=3,$2{a_{n+1}}^2={a_n}^2+{a_{n+2}}^2(n∈N*)$,则a10=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,利用随机模拟的方法可以估计图中由曲线y=$\frac{{x}^{2}}{2}$与两直线x=2及y=0所围成的阴
影部分的面积S
①利用计算机先产生N组均匀随机数(xi,yi)(i=1,2,3,…N),xi∈[0,2],yi∈[0,2]
②生成N个点(xi,yi),并统计满足条件yi<$\frac{{{x}_{i}}^{2}}{2}$的点的个数N1,已知某同学用计算机做模拟试验结果,当N=1000时,N1=332,则据此可估计S的值为1.328.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知三棱锥S-ABC外接球的直径SC=6,且AB=BC=CA=3,则三棱锥S-ABC的体积为(  )
A.$\frac{{3\sqrt{2}}}{4}$B.$\frac{{9\sqrt{2}}}{4}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{9\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=ex(1-x)
②函数f(x)有2个零点
③f(x)>0的解集为(-1,0)∪(1,+∞)
④?x1,x2∈R,都有|f(x1)-f(x2)|<2
其中正确命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆O:x2+y2=r2,直线$x+2\sqrt{2}y+2=0$与圆O相切,且直线l:y=kx+m与椭圆C:$\frac{x^2}{2}+{y^2}=1$相交于P、Q两点,O为原点.
(1)若直线l过椭圆C的左焦点,且与圆O交于A、B两点,且∠AOB=60°,求直线l的方程;
(2)如图,若△POQ的重心恰好在圆上,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC的内角A,B,C所对的边分别为a,b,c,且A=2C.
(Ⅰ)若△ABC为锐角三角形,求$\frac{a}{c}$的取值范围;
(Ⅱ)若b=1,c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,若f(α)=1,则cos(2α+$\frac{π}{3}$)的值是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题中真命题的个数是(  )
①已知m,n是两条不同直线,若m,n平行于同一平面α,则m与n平行;
②已知命题p:?x0∈R,使得x02-2x0+1<0,则¬p:?x∈R,都有x2-2x+1≥0;
③已知回归直线的斜率的估计值是3,样本点的中心为(1,2),则回归直线方程为$\stackrel{∧}{y}$=3x+1
④若x,y,z∈R,且xyz≠0,则命题“x,y,z成等比数列”是“y=$\sqrt{xz}$”的充分不必要条件.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案