| A. | $m<\frac{1}{4}$ | B. | m≤-2 | C. | $-2≤m<\frac{1}{4}$ | D. | m>2 |
分析 结合方程f2(x)+f(x)+m=0有三个不同的实数根,将问题转化为函数图象交点的个数判断问题,结合函数f(x)的图象即可获得解答.
解答 解:函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x≤0}\\{-lnx,x>0}\end{array}\right.$的图象如图,![]()
若关于x的方程f2(x)+f(x)+m=0有三个不同实数根,令f(x)=t,
则方程t2+t+m=0的两根一个大于等于1而另一个小于1.
再令g(t)=t2+t+m,则g(1)≤0,即2+m≤0,得m≤-2.
故选:B.
点评 本题考查的是方程的根的存在性以及根的个数判断,考查转化的思想、数形结合的思想方法,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-∞,\frac{1}{e}})$ | B. | $({0,\frac{1}{e}})$ | C. | (-∞,0) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | 4 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$\frac{1}{a}>\frac{1}{b}$,则a<b | |
| B. | 若命题$P:?x∈({0,π}),x+\frac{1}{sinx}≤2$,则?P为真命题 | |
| C. | 已知命题p,q,“p为真命题”是“p∧q为真命题”的充要条件 | |
| D. | 若f(x)为R上的偶函数,则$\int_{-1}^1{f(x)dx}=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | 0 | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com