精英家教网 > 高中数学 > 题目详情
17.已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M与圆N的公共弦,AB=4.若OM=ON=3,则两圆圆心的距离MN=(  )
A.4B.3C.2D.1

分析 根据题意画出图形,欲求两圆圆心的距离,将它放在与球心组成的三角形MNO中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得.

解答 解::∵ON=3,球半径为4,
∴小圆N的半径为$\sqrt{7}$,
∵小圆N中弦长AB=4,作NE垂直于AB,
∴NE=$\sqrt{3}$,同理可得ME=$\sqrt{3}$,在直角三角形ONE中,
∵NE=$\sqrt{3}$,ON=3,
∴∠EON=$\frac{π}{6}$,
∴∠MON=$\frac{π}{3}$,
∴MN=3.

点评 本题主要考查了点、线、面间的距离计算,还考查球、直线与圆的基础知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C1的极坐标方程为ρ=4sinθ,圆C2的极坐标方程为$ρ=4cos(θ+\frac{π}{6})$,已知C1与C2交于A,B两点,点B位于第一象限.
(Ⅰ)求点x和点y的极坐标;
(Ⅱ)设圆C1的圆心为C1,点P是直线BC1上的动点,且满足$\overrightarrow{BP}$=m$\overrightarrow{B{C}_{1}}$,若直线C1P的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{\sqrt{3}}{2}λ}\\{y=1+\frac{1}{2}λ}\end{array}$(λ为参数),则m:λ的值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面AEF⊥平面PAB;
(3)设$AB=\sqrt{2}AD$,求直线AC与平面AEF所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知函数f(x)=sinx($\sqrt{3}$cosx+sinx)+$\frac{1}{2}$.
(Ⅰ)若x∈[0,π],求f(x)递增区间;
(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=$\sqrt{3}$,f(C)=2,sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在二项式${({\sqrt{x}-2})^6}$的展开式中,二项式系数最大的项的系数为-160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=ax2+bx-2(a>0,b>0)有两个零点,其中一个零点在区间(1,2)内,则a+b的取值范围为($\frac{1}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据最新修订的《环境空气质量标准》指出空气质量指数在0~50,各类人群可正常活动.某市环保局在2014年对该市进行了为期一年的空气质量检测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为[0,10),[10,20),[20,30),[30,40),[40,50],由此得到样本的空气质量指数频率分布直方图,如图.
(Ⅰ)求a的值;并根据样本数据,试估计这一年度的空气
质量指数的平均值;
(Ⅱ)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为ξ,求ξ的分布列,并估计一个月(30天)中空气质量能达到“最优等级”的天数.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:填空题

已知是定义在上的奇函数且,当,且时,有,若对所有恒成立,则实数的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=lnx2-2的零点是(  )
A.eB.$\sqrt{e}$C.-eD.e或-e

查看答案和解析>>

同步练习册答案