精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=ax2+bx-2(a>0,b>0)有两个零点,其中一个零点在区间(1,2)内,则a+b的取值范围为($\frac{1}{2}$,2).

分析 利用零点存在定理,构造函数使得f(1)•f(2)<0,求出a+b的范围即可.

解答 解:关于x的方程ax2+bx-2=0(a>0,b>0)有两个实数根,
其中一个根在区间(1,2)内,令f(x)=ax2+bx-2
即:方程对应的函数图象在(1,2)内与x轴有一个交点,
满足f(1)•f(2)<0,
∴(a+b-2)(4a+2b-2)<0
(a+b-2)(2a+b-1)<0
若a+b-2<0,即a+b<2时,
则2a+b-1>0,即2(a+b)>b+1>1
即a+b>$\frac{1}{2}$;
若a+b-2>0,则2a+b-1>0
不满足条件;
所以a+b∈($\frac{1}{2}$,2),
故答案为:($\frac{1}{2}$,2).

点评 本题考查一元二次方程根与系数的关系,零点存在定理,不等式的解法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.甲、乙等5名选手被随即分配到A、B、C、D四个不同的项目中,每个项目至少有一人,则甲乙两人同时参加A项目的概率为$\frac{1}{40}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和Sn=n2+2n,正项等比数列{bn}满足:b1=a1-1,且b4=2b2+b3
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足:cn=$\frac{{a}_{n}}{{b}_{n}}$,其前n项和为Tn,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,三棱锥的四个顶点P、A、B、C在同一个球面上,顶点P在平面ABC内的射影是H,若球心在直线PH上,则点H一定是△ABC的(  )
A.重心B.垂心C.内心D.外心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M与圆N的公共弦,AB=4.若OM=ON=3,则两圆圆心的距离MN=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,已知点G是△ABC的重心,过点G作直线与AB,AC两边分别交于M,N两点,且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,则x+y的最小值为(  )
A.2B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(1,0),且点$P(1,\frac{3}{2})$在椭圆C上,O为坐标原点.
(1)求椭圆C的标准方程;
(2)过椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{{{b^2}-\frac{5}{3}}}$=1上异于其顶点的任一点P,作圆O:x2+y2=$\frac{4}{3}$的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴、y轴上的截距分别为m、n,证明:$\frac{1}{{3{m^2}}}+\frac{1}{n^2}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和Sn=-an-${(\frac{1}{2})^{n-1}}$+2(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{n+1}{n}$an}的前n项和为Tn,证明:n∈N*,且n≥3时,Tn>$\frac{5n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日、第五日、第八日所织之和为十五尺,问第十日所织尺数为(  )
A.6B.9C.12D.15

查看答案和解析>>

同步练习册答案