精英家教网 > 高中数学 > 题目详情
2.设a>1,函数f(x)=(1+x2)ex-a.
(1)求f(x)的单调区间;
(2)证明f(x)在(-∞,+∞)上仅有一个零点;
(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤$\root{3}{a-\frac{2}{e}}$-1.

分析 (1)利用f′(x)>0,求出函数单调增区间.
(2)证明只有1个零点,需要说明两个方面:①函数单调;②函数有零点.
(3)利用导数的最值求解方法证明,思路较为复杂.

解答 解:(1)f′(x)=ex(x2+2x+1)=ex(x+1)2
∴f′(x)≥0,
∴f(x)=(1+x2)ex-a在(-∞,+∞)上为增函数.
(2)证明:∵f(0)=1-a,a>1,
∴1-a<0,即f(0)<0,
∵f($\sqrt{a}$)=(1+a)${e}^{\sqrt{a}}$-a=${e}^{\sqrt{a}}$+a(${e}^{\sqrt{a}}$-1),a>1,
∴${e}^{\sqrt{a}}$>1,${e}^{\sqrt{a}}$-1>0,即f($\sqrt{a}$)>0,
且由(1)问知函数在(-∞,+∞)上为增函数,
∴f(x)在(-∞,+∞)上有且只有一个零点.
(3)证明:f′(x)=ex(x+1)2
设点P(x0,y0)则)f'(x)=ex0(x0+1)2
∵y=f(x)在点P处的切线与x轴平行,
∴f′(x0)=0,即:ex0(x0+1)2=0,
∴x0=-1,
将x0=-1代入y=f(x)得y0=$\frac{2}{e}-a$.
∴${k}_{op}=\frac{\frac{2}{e}-a}{-1}=a-\frac{2}{e}$,
∴$f'(m)={e}^{m}(m+1)^{2}=a-\frac{2}{e}$,
要证m≤$\root{3}{a-\frac{2}{e}}$-1,即证(m+1)3≤a-$\frac{2}{e}$,
需要证(m+1)3≤em(m+1)2
即证m+1≤em
因此构造函数g(m)=em-(m+1),
则g′(m)=em-1,由g′(m)=0得m=0.
当m∈(0,+∞)时,g′(m)>0,
当m∈(-∞,0)时,g′(m)<0,
∴g(m)的最小值为g(0)=0,
∴g(m)=em-(m+1)≥0,
∴em≥m+1,
∴em(m+1)2≥(m+1)3
即:$a-\frac{2}{e}≥(m+1)^{3}$,
∴m≤$\root{3}{a-\frac{2}{e}}-1$.

点评 本题考查了导数在函数单调性和最值上的应用,属于综合应用,在高考中属于压轴题目,有较大难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知椭圆$\frac{x^2}{25}$+$\frac{y^2}{m^2}$=1(m>0 )的左焦点为F1(-4,0),则m=(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个四面体的三视图如图所示,则该四面体的表面积是(  )
A.1+$\sqrt{3}$B.1+2$\sqrt{2}$C.2+$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若空间中n个不同的点两两距离都相等,则正整数n的取值(  )
A.至多等于3B.至多等于4C.等于5D.大于5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设曲线y=ex在点(0,1)处的切线与曲线y=$\frac{1}{x}$(x>0)上点P的切线垂直,则P的坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\sqrt{4-|x|}$+lg$\frac{{{x^2}-5x+6}}{x-3}$的定义域为(  )
A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$,且点M和N分别为B1C和D1D的中点.
(Ⅰ)求证:MN∥平面ABCD
(Ⅱ)求二面角D1-AC-B1的正弦值;
(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为$\frac{1}{3}$,求线段A1E的长.

查看答案和解析>>

同步练习册答案