精英家教网 > 高中数学 > 题目详情
13.一个四面体的三视图如图所示,则该四面体的表面积是(  )
A.1+$\sqrt{3}$B.1+2$\sqrt{2}$C.2+$\sqrt{3}$D.2$\sqrt{2}$

分析 判断得出三棱锥O-ABC,OE⊥底面ABC,EA=ED=1,OE=1,AB=BC=$\sqrt{2}$,AB⊥BC,
可判断;△OAB≌△OBC的直角三角形,
运用面积求解即可.

解答 解:∵


三棱锥O-ABC,OE⊥底面ABC,EA=ED=1,OE=1,AB=BC=$\sqrt{2}$
∴AB⊥BC,
∴可判断;△OAB≌△OBC的直角三角形,
S△OAC=S△ABC=$\frac{1}{2}×2×1$=1,
S△OAB=S△OBC=$\frac{\sqrt{3}}{4}$×$(\sqrt{2})$2=$\sqrt{3}$
该四面体的表面积:2$+\sqrt{3}$,
故选:C.

点评 本题考查了三棱锥的三视图的运用,关键是恢复几何体的直观图,考查了学生的空间思维能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)记Tn=x12x32…x2n-12,证明:Tn≥$\frac{1}{4n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sinx-2$\sqrt{3}$sin2$\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[0,$\frac{2π}{3}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为(  )
A.36πB.64πC.144πD.256π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=emx+x2-mx.
(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;
(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.
(1)求三棱锥P-ABC的体积;
(2)证明:在线段PC上存在点M,使得AC⊥BM,并求$\frac{PM}{MC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆E的中心在坐标原点,离心率为$\frac{1}{2}$,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a>1,函数f(x)=(1+x2)ex-a.
(1)求f(x)的单调区间;
(2)证明f(x)在(-∞,+∞)上仅有一个零点;
(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤$\root{3}{a-\frac{2}{e}}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案