精英家教网 > 高中数学 > 题目详情
函数f(x)=
1-
1
2
log2x
的定义域为
 
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:由1-
1
2
log
x
2
≥0,得:
log
x
2
≤2,解出x≤4且x>0,从而求出函数的定义域.
解答: 解:∵1-
1
2
log
x
2
≥0,
log
x
2
≤2,
∴x≤4且x>0,
故答案为:(0,4].
点评:本题考查了函数的定义域及其求法,考查了对数函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-xlx,g(x)=f(x)-xf′(a).(其中f′(a)表示函数f(x)在x=a处的导数,a为正常数)
(Ⅰ)求g(x)的单调区间;
(Ⅱ)对任意的正实数x1x2,且x1<x2,证明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1);
(Ⅲ)若对任意的n∈N*,且n≥3时,有ln2•lnn≤ln(2+k)•ln(n-k),其中k=1,2,…n-2.求证:
1
ln2
+
1
ln3
+L+
1
lnn
1-f(n+1)
ln2•lnn
(n≥且n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

焦点在轴x上的椭圆方程为
x2
a2
+y2=1(a>0),F1、F2是椭圆的两个焦点,若椭圆上存在点B,使得∠F1BF2=
π
2
,那么实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足
3x-y-6≤0
x-y+2≥0
x+y≥3
,则目标函数z=2x+y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=3
2
和ρsin2θ=8cosθ,直线l与曲线C交于点A、B,线段AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,a2=2且an+2-an=1+(-1)n(n∈N*),则S50=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(0,
π
2
),sin(α+
π
3
)=
3
5
,则cosα的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若0.5x>2,则实数x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简
(ln2-1)2
=
 

查看答案和解析>>

同步练习册答案