精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-xlx,g(x)=f(x)-xf′(a).(其中f′(a)表示函数f(x)在x=a处的导数,a为正常数)
(Ⅰ)求g(x)的单调区间;
(Ⅱ)对任意的正实数x1x2,且x1<x2,证明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1);
(Ⅲ)若对任意的n∈N*,且n≥3时,有ln2•lnn≤ln(2+k)•ln(n-k),其中k=1,2,…n-2.求证:
1
ln2
+
1
ln3
+L+
1
lnn
1-f(n+1)
ln2•lnn
(n≥且n∈N*
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)f'(x)=-lnx,g(x)=x-xlnx+xlna,g'(x)=f'(x)-f'(a)=-lnx+lna=ln
a
x
,由此利用导数性质能求出g(x)的单调区间.
(Ⅱ)对任意的正实数x1,x2,且x1<x2,取a=x1,则x2∈(x1,+∞),得f(x2)-f(x1)<(x2-x1)f'(x1);取a=x2,则x1∈(0,x2),得f(x2)-f(x1)>(x2-x1)f'(x2),由此能证明(x2-x1)f'(x2)<f(x2)-f(x1)<(x2-x1)f'(x1).
(Ⅲ)对k=1,2,…,n-2,令φ(x)=
ln(x+k)
lnx
(x>1),则φ′(x)=
xlnx-(x+k)ln(x+k)
x(x+k)(lnx)2
,由此利用导数性质能证明
1
ln2
+
1
ln3
+L+
1
lnn
1-f(n+1)
ln2•lnn
(n≥且n∈N*).
解答: (Ⅰ)解:f'(x)=-lnx,g(x)=x-xlnx+xlna,
g'(x)=f'(x)-f'(a)=-lnx+lna=ln
a
x
.…(2分)
所以,x∈(0,a)时,g'(x)>0,g(x)单调递增;
x∈(a,+∞)时,g'(x)<0,g(x)单调递减.
所以,g(x)的单调递增区间为(0,a],单调递减区间为[a,+∞).  …(4分)
(Ⅱ)证明:对任意的正实数x1,x2,且x1<x2
取a=x1,则x2∈(x1,+∞),由(1)得g(x1)>g(x2),
即g(x1)=f(x1)-x1f'(x1)>f(x2)-x2f'(x1)=g(x2),
所以,f(x2)-f(x1)<(x2-x1)f'(x1)…①.…(6分)
取a=x2,则x1∈(0,x2),
由(Ⅰ)得g(x1)<g(x2),
即g(x1)=f(x1)-x1f'(x2)<f(x2)-x2f'(x2)=g(x2),
所以,f(x2)-f(x1)>(x2-x1)f'(x2)…②.
综合①②,得(x2-x1)f'(x2)<f(x2)-f(x1)<(x2-x1)f'(x1). …(8分)
(Ⅲ)证明:对k=1,2,…,n-2,
令φ(x)=
ln(x+k)
lnx
(x>1),
则φ′(x)=
xlnx-(x+k)ln(x+k)
x(x+k)(lnx)2

显然1<x<x+k,0<lnx<ln(x+k),
所以xlnx<(x+k)ln(x+k),
所以φ′(x)<0,φ(x)在(1,+∞)上单调递减.
由n-k≥2,得φ(n-k)≤φ(2),
lnn
ln(n-k)
ln(2+k)
ln2

所以ln2lnn≤ln(2+k)ln(n-k),k=1,2,…,n-2.…(10分)
所以2(
1
ln2
+
1
ln3
+…+
1
lnn
)=
lnn+ln2
ln2lnn
+
ln(n-1)+ln3
ln3ln(n-1)
+…+
ln2+lnn
lnnln2

lnn+ln2
ln2lnn
+
ln(n-1)+ln3
ln2ln(n-1)
+…+
ln2+lnn
lnnln2
=2
ln2+ln3+…+lnn
ln2lnn
,…(12分)
又由(Ⅱ)知f(n+1)-f(n)<f′(n)=-lnn,
所以lnn<f(n)-f(n+1).
∴ln1+ln2+…+lnn
<f(1)-f(2)+f(2)-f(3)+…+f(n)-f(n+1)
=f(1)-f(n+1)=1-f(n+1).
所以
1
ln2
+
1
ln3
+L+
1
lnn
1-f(n+1)
ln2•lnn
(n≥且n∈N*).…(14分)
点评:本题重点考查利用导数研究函数的性质,利用函数的性质解决不等式、方程问题.重点考查学生的代数推理论证能力.解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex(x2+ax-a+1),其中a是常数.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在定义域内是单调递增函数,求a的取值范围;
(Ⅲ)若关于x的方程f(x)=ex+k在[0,+∞)上有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,b>0,且a+b=1.求证:
(Ⅰ)ab≤
1
4

(Ⅱ)
1
a+1
+
1
b+1
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:sin2
14π
3
+cos3π+tan
4
-cos2(-
11π
6
)+sin(-
6
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点A(2,-3)
(1)若l与直线y+2x-5=0平行,求直线l的方程;
(2)若l与直线y+2x-5=0垂直,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=2an-1+2n+1(n∈N,n>1),a3=27,数列{bn}满足bn=
1
2n
(an+t).
(1)若数列{bn}为等差数列,求bn
(2)在(1)的条件下,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

正项等比数列{an}满足a1•a2n-1=22n(n∈N*),则log2a1+log2a3+…+log2a2n-1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2,4},B={2,6},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-
1
2
log2x
的定义域为
 

查看答案和解析>>

同步练习册答案