精英家教网 > 高中数学 > 题目详情
已知直线l过点A(2,-3)
(1)若l与直线y+2x-5=0平行,求直线l的方程;
(2)若l与直线y+2x-5=0垂直,求直线l的方程.
考点:直线的一般式方程与直线的平行关系,直线的一般式方程与直线的垂直关系
专题:直线与圆
分析:(1)根据两直线平行:斜率相等,设过A与直线l平行的直线方程是2x+y+m=0,把点A(2,-3)代入可解得m,得到所求的直线方程;
(2)根据两直线垂直:斜率之积等于-1,设过点A与l垂直的直线方程是 x-2y+n=0,把点A(2,-3)代入可解得n值,得到所求的直线方程.
解答: 解:(1)设过A与直线l平行的直线方程是2x+y+m=0,
把点A(2,-3),解得 m=-1,
故所求的直线方程是2x+y-1=0.
(2)设过点A与l垂直的直线方程是x-2y+n=0,
把点A(2,-3)代入可解得n=-8,
故所求的直线方程是x-2y-8=0.
点评:本题考查根据两直线平行和垂直的条件,以及对应方程的设法,利用待定系数法求直线方程的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(普通班学生做)已知向量
a
=(sinθ,-2)与
b
=(1,cosθ)互相垂直,其中θ∈(0,
π
2
).求sinθ和cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PA=PB=PC=PD,F为PC中点.
(1)在图中过F求作一平面与PA平行,并说明理由;
(2)求证:面PBD⊥面PAC;
(3)若PA=2AD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(实验班做)已知直线l经过点P(1,1),倾斜角为α,且tanα=
3
4

(1)写出直线l的一个参数方程;
(2)设l与圆x2+y2=4相交于两点A,B,求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

求使不等式2-2x>(
1
2
x+3成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-xlx,g(x)=f(x)-xf′(a).(其中f′(a)表示函数f(x)在x=a处的导数,a为正常数)
(Ⅰ)求g(x)的单调区间;
(Ⅱ)对任意的正实数x1x2,且x1<x2,证明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1);
(Ⅲ)若对任意的n∈N*,且n≥3时,有ln2•lnn≤ln(2+k)•ln(n-k),其中k=1,2,…n-2.求证:
1
ln2
+
1
ln3
+L+
1
lnn
1-f(n+1)
ln2•lnn
(n≥且n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+ln(1+2x).
(1)求f(x)的最大值;
(2)设b>a>0,证明ln
a+1
b+1
>(a+b)(a+b+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2x,则f(x)在[4,256]上的最大值是最小值的
 
倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=3
2
和ρsin2θ=8cosθ,直线l与曲线C交于点A、B,线段AB的长为
 

查看答案和解析>>

同步练习册答案