分析 利用导数的性质求解.
解答 解:∵f(x)=x(1-x2)=x-x3,
∴f′(x)=1-3x2,
由f′(x)=0,得x=$\frac{\sqrt{3}}{3}$,或x=-$\frac{\sqrt{3}}{3}$(舍去),
∵f(0)=0,f($\frac{\sqrt{3}}{3}$)=$\frac{\sqrt{3}}{3}$(1-$\frac{1}{3}$)=$\frac{2\sqrt{3}}{9}$,f(1)=0,
∴f(x)=x(1-x2)在[0,1]上的最大值为$\frac{2\sqrt{3}}{9}$.
点评 本题考查函数在闭区间上的最大值的求法,是基础题,解题时要认真审题,注意导数性质的灵活运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10+8$\sqrt{3}$m2 | B. | 12+10$\sqrt{3}$m2 | C. | 12+8$\sqrt{3}$m2 | D. | 10+10$\sqrt{3}$m2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1)∪(1,3] | B. | (0,1)∪(1,3) | C. | (0,1)∪(2,+∞) | D. | (0,1)∪(1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com