精英家教网 > 高中数学 > 题目详情
6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1 (a>b>0 ) 经过点 P(1,$\frac{\sqrt{3}}{2}$ ),离心率 e=$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆C的标准方程.
(Ⅱ)设过点E(0,-2 ) 的直线l 与C相交于P,Q两点,求△OPQ 面积的最大值.

分析 (Ⅰ)运用椭圆的离心率公式和点满足椭圆方程,以及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;
(Ⅱ)当直线l的斜率不存在,不合题意,可设直线l:y=kx-2,P(x1,y1),Q(x2,y2),联立椭圆方程,消去y,得到x的方程,运用判别式大于0和韦达定理,以及弦长公式,点到直线的距离公式,由三角形的面积公式,运用换元法和基本不等式即可得到所求最大值.

解答 解:(Ⅰ)由点$P(1,\frac{{\sqrt{3}}}{2})$在椭圆上得,$\frac{1}{a^2}+\frac{3}{{4{b^2}}}=1$①
又e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$②,c2=a2-b2
由①②③得c2=3,a2=4,b2=1,
故椭圆C的标准方程为$\frac{x^2}{4}+{y^2}=1$.
(Ⅱ)当直线l的斜率不存在,不合题意,可设直线l:y=kx-2,P(x1,y1),Q(x2,y2),
将y=kx-2代入椭圆方程x2+4y2=4,可得(1+4k2)x2-16kx+12=0,
由△=162k2-48(1+4k2)>0,解得k>$\frac{\sqrt{3}}{2}$或k<-$\frac{\sqrt{3}}{2}$.
x1+x2=$\frac{16k}{1+4{k}^{2}}$,x1x2=$\frac{12}{1+4{k}^{2}}$,
|PQ|=$\sqrt{1+{k}^{2}}$•|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{16k}{1+4{k}^{2}})^{2}-\frac{48}{1+4{k}^{2}}}$=4$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{4{k}^{2}-3}}{1+4{k}^{2}}$,
又O到直线PQ的距离d=$\frac{2}{\sqrt{1+{k}^{2}}}$,
则S△OPQ=$\frac{1}{2}$d•|PQ|=4•$\frac{\sqrt{4{k}^{2}-3}}{1+4{k}^{2}}$,
设t=$\sqrt{4{k}^{2}-3}$,(t>0),则4k2=3+t2
即有S△OPQ=$\frac{4t}{4+{t}^{2}}$=$\frac{4}{t+\frac{4}{t}}$
由t+$\frac{4}{t}$≥2$\sqrt{t•\frac{4}{t}}$=4,
当且仅当t=2,即k=±$\frac{\sqrt{7}}{2}$时等号成立,满足判别式大于0.
则S△OPQ≤1.
故△OPQ 面积的最大值为1.

点评 本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查三角形的面积的最大值,注意运用联立方程组,运用韦达定理和弦长公式,以及点到直线的距离公式,考查基本不等式的运用:求最值,化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若${({x^2}-\frac{1}{x})^n}$的展开式中含x3的项为第6项,设(1-3x)n=a0+a1x+a2x2+…+anxn,则a1+a2+…+an的值为-513.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.命题p:方程$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{m-1}$=1表示焦点在x轴上的双曲线.命题q:直线y=x+m与抛物线y2=4x有公共点.
若“p∨q”为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0 ) 经过点 P(1,$\frac{\sqrt{3}}{2}$),离心率 e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过点E (0,-2 ) 的直线l与C相交于P,Q 两点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\frac{1-x}{1+x}$
(1)试证明f(x)在(-∞,1)上为单调递减函数;
(2)若函数g(x)=($\frac{1}{2}$)f(x),且g(x)在区间[-3,-2]上没有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.各项均为正数的等比数列{an}的前n项和为Sn,若S4=10,S12=130,则S8=(  )
A.-30B.40C.40或-30D.40或-50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)的定义域为R,其图象关于点(1,0)中心对称,其导函数为f′(x),当x<1时,(x-1)[f(x)+(x-1)f′(x)]>0,则不等式xf(x+1)>f(2)的解集为(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义:设f(x)为(a,b)上的可导函数,若f′(x)为增函数,则称f(x)为(a,b)上的凸函数.
(1)判断函数y=x3与y=lg$\frac{1}{x}$是否为凸函数;
(2)设f(x)为(a,b)上的凸函数,求证:若λ12+…+λn=1,λi>0(i=1,2,…,n),则?xi∈(a,b)(i=1,2,…,n)恒有λ1f(x1)+λ2f(x2)+…+λnf(xn)=f(λ1x12x2+…+λnxn)成立;
(3)设a,b,c>0,n∈N*,n≥b,求证:an+bn+cn≥an-5b3c2+bn-5c3a2+cn-5a3b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
支持不支持合计
年龄不大于50岁206080
年龄大于50岁101020
合计3070100
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d,
P(K2>k)0.1000.0500.0250.010
k2.7063.8415.0246.635

查看答案和解析>>

同步练习册答案