【题目】已知函数.
(1)若曲线在点处的切线斜率为3,且时有极值,求函数的解析式;
(2)在(1)的条件下,求函数在上的最大值和最小值.
【答案】(1)a=2,b=-4(2)最大值13,最小值-11
【解析】试题分析:
(1)由题意求解关于实数a,b的方程组可得函数的解析式为;
(2)由题意对函数求导,结合导函数研究原函数的单调性 ,据此可得函数在上的最大值是13,最小值是-11.
试题解析:
(1) 由f(1)=3, f()=0 得a=2,b=-4 ,则函数的解析式为.
(2)由f(x)=x3+2x2-4x+5 得f(x)=(x+2)(3x-2) f(x)=0得 x1=-2 ,x2=
变化情况如表:
x | -4 | (-4,-2) | -2 | (-2,) | (,1) | 1 | |
f(x) | + | 0 | - | 0 | + | ||
f(x) | 递增 | 极大值 | 递减 | 极小值 | 递增 | ||
函数值 | -11 | 13 | 4 |
所以f(x)在[-4,1]上的最大值13,最小值-11
科目:高中数学 来源: 题型:
【题目】某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:
(月份) | 1 | 2 | 3 | 4 | 5 |
(万盒) | 1 | 4 | 5 | 6 | 6 |
(1)该同学为了求出关于的线性回归方程,根据表中数据已经正确计算出,试求出的值,并估计该厂6月份生产的甲胶囊产量数;
(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊.后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂商为了解用户对其产品是否满意,在使用产品的用户中随机调查了80人,结果如下表:
(1)根据上述,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;
(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
注:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三名学生参加某电视台举办的国学知识竞赛,在本次竞赛中只有过关和不过关两种结果,假设甲、乙、丙竞赛过关的概率分别为,且他们竞赛过关与否互不影响.
(1)求在这次国学知识竞赛中,甲、乙、丙三名学生至少有一名学生过关的概率;
(2)记在这次国学知识竞赛中,甲、乙、丙三名学生过关的人数为,求随机变量的分布列和数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两种不同规格的产品,其质量按测试指标分数进行划分,其中分数不小于82分的为合格品,否则为次品.现随机抽取两种产品各100件进行检测,其结果如下:
测试指标分数 | |||||
甲产品 | 8 | 12 | 40 | 32 | 8 |
乙产品 | 7 | 18 | 40 | 29 | 6 |
(1)根据以上数据,完成下面的 列联表,并判断是否有 的有把握认为两种产品的质量有明显差异?
甲产品 | 乙产品 | 合计 | |
合格品 | |||
次品 | |||
合计 |
(2)已知生产1件甲产品,若为合格品,则可盈利40元,若为次品,则亏损5元;生产1件乙产品,若为合格品,则可盈利50元,若为次品,则亏损10元.记 为生产1件甲产品和1件乙产品所得的总利润,求随机变量的分布列和数学期望(将产品的合格率作为抽检一件这种产品为合格品的概率).
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com