精英家教网 > 高中数学 > 题目详情
5.在区间[-1,0]上任取两实数x、y,则y<3x的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 本题是一个等可能事件的概率,试验发生包含的事件是在区间[-1,0]上任取两个数x和y,写出事件对应的集合,做出面积,满足条件的事件是y<3x,写出对应的集合,做出面积,得到概率.

解答 解:由题意知本题是一个等可能事件的概率,
∵试验发生包含的事件是在区间[-1,0]上任取两个数x和y,对应的面积是sΩ=1,
满足条件的事件是y<3x,事件对应的集合是A={(x,y)|-1≤x≤0,-1≤y≤0,y<3x}
对应的图形的面积是sA=$\frac{1}{2}×\frac{1}{3}×1$=$\frac{1}{6}$,
∴根据等可能事件的概率得到P=$\frac{1}{6}$
故选:A.

点评 本题考查等可能事件的概率,是一个几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到结果,是一个中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.8把椅子摆成一排,4人随机就座,任何两人不相邻的坐法种数为(  )
A.144B.120C.72D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某地最近十年对某商品的需求量逐年上升,下表是部分统计数据:
年份20082010201220142016
需要量(万件)236246257276286
(1)利用所给数据求年需求量y与年份x之间的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)预测该地2018年的商品需求量(结果保留整数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=$\sqrt{-{x}^{2}+2x+3}$-$\sqrt{3}$(x∈[0,2])的图象绕坐标原点逆时针旋转θ (θ为锐角),若所得曲线仍是函数的图象,则θ的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,点B是以AC为直径的圆周上的一点,PA=AB=BC,AC=4,PA⊥平面ABC,点E为PB中点.
(Ⅰ)求证:平面AEC⊥平面PBC;
(Ⅱ)求直线AE与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y≥2}\\{ax+y≤4}\\{y≥-1}\end{array}\right.$,目标函数z=3x+y,若a=1,则z的最小值为2;若z的最大值为5,则实数a=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=(x+1)2-alnx在区间(0,+∞)内任取有两个不相等的实数x1,x2,不等式$\frac{{f({{x_1}+1})-f({{x_2}+1})}}{{{x_1}-{x_2}}}$>1恒成立,则a的取值范围是(  )
A.(-∞,3)B.(-∞,-3)C.(-∞,3]D.(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$,g(x)=1-x$+\frac{{x}^{2}}{2}$$-\frac{{x}^{3}}{3}$,设函数F(x)=f(x)•g(x),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等比数列{an}中,2a4-3a3+a2=0,且a1=64,公比q≠1,
(1)求an
(2)设bn=log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案