精英家教网 > 高中数学 > 题目详情
13.菱形的周长为6,面积为1,则它的一个较小内角的正弦值等于$\frac{4}{9}$.

分析 画出图形,根据菱形的性质转化到直角三角形中,利用面积求出较小角的正弦值.

解答 解:根据题意画图得:菱形ABCD中
∵周长为6,
∴所以四边长为1.5,
则:S菱形ABCD=$\frac{1}{2}$AC×BD=1.
则S△ABC=$\frac{1}{2}$S菱形ABCD=$\frac{1}{2}$BC×AE,
∴AE=$\frac{2}{3}$,
在直角三角形ABE中:
sin∠ABC=$\frac{AE}{AB}$=$\frac{\frac{2}{3}}{1.5}$=$\frac{4}{9}$.
故答案为:$\frac{4}{9}$.

点评 先要依据题意画出图形,转化到直角三角形中利用面积再求值就很容易了.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.复数i(1+i)(i为虚数单位)的共轭复数是(  )
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线E:x2=4y,m,n是经过点A(a,-1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D
(Ⅰ)求m的斜率k的取值范围;
(Ⅱ)当n过E的焦点时,求B到n的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点是F(-1,0),上顶点是B,且|BF|=2,直线y=k(x+1)与椭圆C相交于M,N两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若在x轴上存在点P,使得$\overrightarrow{PM}•\overrightarrow{PN}$与k的取值无关,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.证明:$\frac{2}{{3}^{1}-1}$+$\frac{2}{{3}^{2}-1}$+…+$\frac{2}{{3}^{n}-1}$<$\frac{3}{2}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,m,n是四条不同的直线,其中a,b是异面直线,则下列命题正确的个数为(  )
①若m⊥a,m⊥b,n⊥a,n⊥b,则m∥n; 
②若m∥a,n∥b,则m,n是异面直线;
③若m与a,b都相交,n与a,b都相交,则m,n是异面直线.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C1:(x-a)2+y2=9,圆C2:(x-2)2+y2=4,以点C1、C2与A(0,2)围成的三角形的面积为5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}满足:an=$\frac{1}{{{n^2}+n}}$,且Sn=$\frac{9}{10}$,则n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图直角三角形ABC中,|CA|=|CB|,|AB|=3,点E、F分别在CA、CB上,且EF∥AB,AE=$\sqrt{2}$,则$\overrightarrow{AF}$•$\overrightarrow{BE}$=(  )
A.3B.-3C.0D.-7

查看答案和解析>>

同步练习册答案