精英家教网 > 高中数学 > 题目详情
2.在△ABC中,若(a+b+c)(c+b-a)=bc,则A=(  )
A.A=150°B.A=120°C.A=60°D.A=30°

分析 由条件里用余弦定理求得cosA的值,可得A的值.

解答 解:△ABC中,由(a+b+c)(c+b-a)=bc,可得b2+c2-a2=-bc,
∴cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=-$\frac{1}{2}$,故A=120°,
故选:B.

点评 本题主要考查余弦定理的应用,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知直线x-2y-2=0与直线x-2y+3=0,则它们之间的距离为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{3}}{3}$D.$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\sqrt{x}$,则f′(x)=$\frac{1}{2\sqrt{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.我们平时会遇到许多与概率有关的游戏问题,清看下面的游戏,如图所示,从“开始”处出发,每次掷出两颗骰子,两颗骰子点数之和即为出发的格数.
(1)在第一轮到达“车站”的概率是$\frac{1}{9}$;
(2)假设你想要自起点出发去最下边的后半段区域(即电信大楼、日报社或体育馆),则到达这一区域的概率是$\frac{7}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校高三年有375名学生,其中男生150人,女生225人.为调查该校高三年学生每天课外阅读的平均时间(单位:小时),采用分层抽样的方法从中随机抽取25人获得样本数据,该样本数据的频率分布直方图如图.

(Ⅰ)应抽取男生多少人?并根据样本数据,估计该校高三年学生每天课外阅读的平均时间;
(Ⅱ)在这25个样本中,从每天阅读平均时间不少于1.5小时的学生中任意抽取两人,求抽中的这两个人中恰有一个人的阅读平均时间不少于2小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,AD=3,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,空间四边形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在线段OA上,且OM=2MA,点N为BC的中点,则$\overrightarrow{MN}$=(  )
A.-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}\overrightarrow{c}$B.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{2}\overrightarrow{c}$D.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若点(m,n)在直线4x+3y-10=0上,则m2+n2的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.用符号“∈”或“∉”填空.
(1)2a2-8a+9(a∈Z)∈{x|x=2n2+1,n∈Z}
(2)设集合M={x|x=3m+1,m∈Z},N={y|y=3n+2,n∈Z},若x0∈M,y0∈N,则x0y0∉M,x0y0∈N.

查看答案和解析>>

同步练习册答案