分析 利用两角差的正切函数公式,特殊角的三角函数值可得tan14°-tan74°=tan(14°-74°)(1+tan14°tan74°)=-$\sqrt{3}$(1+tan14°tan74°),即可代入得解.
解答 解:∵tan14°-tan74°=tan(14°-74°)(1+tan14°tan74°)=-$\sqrt{3}$(1+tan14°tan74°),
∴tan74°tan14°+$\frac{{\sqrt{3}}}{3}$(tan14°-tan74°)
=tan74°tan14°-(1+tan14°tan74°),
=-1.
故答案为:-1.
点评 本题主要考查了两角差的正切函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 32 | B. | 24 | C. | 18 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -20$\sqrt{3}$ | B. | -20 | C. | 20 | D. | 20$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | $\frac{15}{8}$ | C. | $\frac{16}{5}$ | D. | $\frac{20}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | ±$\sqrt{2}$ | D. | ±2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com