精英家教网 > 高中数学 > 题目详情
10.已知{an}是等比数列,其中a1,a8是关于x的方程x2-2xsinα-$\sqrt{3}$sinα=0的两根,且(a1+a82=2a3a6+6,则锐角α的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 利用一元二次方程的根与系数的关系、等比数列的性质、三角函数求值即可得出.

解答 解:∵a1,a8是关于x的方程x2-2xsinα-$\sqrt{3}$sinα=0的两根,
∴a1•a8=-$\sqrt{3}$sinα,a1+a8=2sinα,
∵(a1+a82=2a3a6+6,
∴4sin2α=2×(-$\sqrt{3}$sinα)+6,
即2sin2α+$\sqrt{3}$sinα-3=0,α为锐角.
∴sinα=$\frac{\sqrt{3}}{2}$,$α=\frac{π}{3}$.
故选:C.

点评 本题考查了一元二次方程的根与系数的关系、等比数列的性质、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.己知直线2x-y-1=0与直线x-2y+1=0交于点P.
(1)求过点P且垂直于直线3x+4y-15=0的直线l1的方程;(结果写成直线方程的一般式)
(2)求过点P并且在两坐标轴上截距相等的直线l2方程(结果写成直线方程的一般式)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合A={3,4,5,6,7},B={x|3<x<7},则A∩(∁UB)=(  )
A.{3,5,7}B.{3,7}C.{4,5,6}D.{5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知q>0的等比数列{an},若a3,a7是方程x2-5x+4=0的两个根,则a5=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,已知b=2,a=3,cos A=-$\frac{5}{13}$,则sin B等于(  )
A.$\frac{8}{13}$B.$\frac{9}{13}$C.$\frac{10}{13}$D.$\frac{11}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等差数列{an}中,首项a1<0,公差d>0,Sn为其前n项和,则点(n,Sn)可能在下列哪条曲线上(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,过抛物线y2=2px(p>0)的焦点F作一条倾斜角为$\frac{π}{4}$的直线与抛物线相交于A,B两点.
(1)用p表示|AB|;
(2)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-3,求这个抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)($\frac{\sqrt{3}}{2}$i-$\frac{1}{2}$)+$\frac{\sqrt{3}}{2}$i=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f1(x)=ex(sinx+cosx),fn+1(x)=fn′(x),则f2017(x)=(  )
A.-21007excosxB.-21007ex(cosx-sinx)
C.21008exsinxD.21008ex(sinx+cosx)

查看答案和解析>>

同步练习册答案