精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=
3
,A=30° 则角B等于(  )
A、60°或120°
B、30°或150°
C、60°
D、120°
考点:正弦定理
专题:解三角形
分析:利用正弦定理列出关系式,把a,b,sinA的值代入求出sinB的值,即可确定出B的度数.
解答: 解:∵△ABC中,a=1,b=
3
,A=30°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
3
×
1
2
1
=
3
2

∵a<b,∴A<B,
则B=60°或120°,
故选:A.
点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2+3x-10>0,且q是p的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x+2y=4(x,y∈R+),则
2
x
+
1
y
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=4x上一点M到焦点F的距离为5,则点M的横坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4sin
ω x
2
cos (
ω x
2
+
π
3
)+
3
(x∈R,ω>0)的最小正周期为4π.
(Ⅰ) 求函数f(x)的最大值;
(Ⅱ) 若α∈(0,
π
2
),且f(α-
π
2
)=
6
5
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为
3
2
,AC=2,∠BAC=60°,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log0.5(x2-1)的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log2(x2+3),x<0
-tanx,0≤x<
π
2
,则f(f(
π
4
))=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈N|x-3≤0},B={x∈Z|x2+x-2≤0},则A∪B=
 

查看答案和解析>>

同步练习册答案