精英家教网 > 高中数学 > 题目详情
6.如图,正方形ABCD所在平面与圆O所在平面相交于CD,CE为圆O的直径,线段CD为圆O的弦,AE垂直于圆O所在平面.
(1)求证:CD⊥平面AED;
(2)设异面直线CB与DE所成的角为$\frac{π}{6}$且AE=1,将△ACD(及其内部)绕AE所在直线旋转一周形成一几何体,求该几何体的体积.

分析 (1)通过证明CD⊥ED,CD⊥AE,然后证明CD⊥平面AED.
(2)所求问题实际是将△ACD(及其内部)绕AE所在直线旋转一周形成一几何体的体积是两圆锥的体积之差.求解即可.

解答 解:(1)证明:因为CE为圆O的直径,所以$∠CDE=\frac{π}{2}$,即CD⊥ED…2分
又因为AE垂直于圆面,CD⊥AE所在平面,所以CD⊥AE…4分
又CD⊥ED,所以CD⊥平面AED…5分
(2)由题意知,将△ACD(及其内部)绕AE所在直线旋转一周形成一几何体的体积是两圆锥的体积之差.
因为异面直线CB与DE所成角为$\frac{π}{6}$,且CB∥DA,所以$∠ADE=\frac{π}{6}$,…7分
又因为AE=1,所以,在Rt△AED中,$DE=\sqrt{3}$,DA=2…9分
在Rt△CDE中,CD=DA=2,$DE=\sqrt{3}$,所以$CE=\sqrt{7}$…10分
所以该几何体的体积$V=\frac{1}{3}π•C{E^2}•AE-\frac{1}{3}π•D{E^2}•AE=\frac{4}{3}π$…12分.

点评 本题考查几何体的体积的求法,直线与平面垂直的判断,考查逻辑推理能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设x∈R,M表示不超过x的最大整数.给出下列结论:
①[3x]=3[x]
②若m,n∈R,则[m-n]≤[m]-[n];
③函数f(x)=x-[x]-定是周期函数:
④若方程[x]=ax有且仅有3个解,则a∈($\frac{3}{4}$,$\frac{4}{5}$]∪[$\frac{4}{3}$,$\frac{3}{2}$).
其中正确的结论有②③.(请填上你认为所有正确的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=tanx(-$\frac{π}{4}$≤x≤$\frac{π}{4}$,且x≠0)的值域是[-1,0)∪(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在正三角形ABC中,E、F、P分别是-AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2).

(1)求证:A1E⊥平面BEP;
(2)求二面角B一A1P一F的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}中,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,a1=2,则数列{an}的前2015项的积等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在圆锥PO中,已知高PO=2,底面圆的半径为1;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,其中点M为所在母线的中点,O为底面圆的圆心,对于下面四个命题,正确的个数有(  )

①圆的面积为$\frac{π}{4}$;
②椭圆的长轴长为$\sqrt{13}$;
③双曲线两渐近线的夹角为arcsin$\frac{4}{5}$;
④抛物线上的点$(\frac{\sqrt{5}}{2},1)$,其焦点到准线的距离为$\frac{{\sqrt{5}}}{5}$.
A.1 个B.2 个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在正三角形ABC中,E、F、P分别是-AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)

(1)求证:FP∥平面A1EB.
(2)求证:A1E⊥平面BEP;
(3)求直线A1E与平面A1BP所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,AB=2PA,E是线段BC的中点.
(1)求证:PE⊥AD;
(2)求平面PAE与平面PCD所成锐二面角的余弦值;
(3)在线段PD上是否存在一点F,使得CF∥平面PAE,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,a、b、c分别为A、B、C的对边,A<B<C<90°,B=60°,且$\sqrt{(1+cos2A)(1+cos2C)}$=$\frac{\sqrt{3}-1}{2}$
(1)求角A;
(2)若△ABC的外接圆半径为2,求△ABC面积.

查看答案和解析>>

同步练习册答案