精英家教网 > 高中数学 > 题目详情
9.有一批产品,其中12件是正品,4件是次品,有放回的任取4件,若X表示取到次品的件数,则D(X)=(  )
A.$\frac{3}{4}$B.$\frac{8}{9}$C.$\frac{3}{8}$D.$\frac{2}{5}$

分析 由题意,X~B(4,$\frac{1}{4}$),利用方差公式可得结论.

解答 解:∵X~B(4,$\frac{1}{4}$),
∴DX=4×$\frac{1}{4}$×$\frac{3}{4}$=$\frac{3}{4}$.
故选:A.

点评 本题考查离散型随机变量的期望和方差,解题时要注意二项分布方差计算公式的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{NC}$,点P在BN上.
(1)若点P是线段BN的中点,利用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{AP}$;
(2)若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{2}{9}$$\overrightarrow{AC}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C的对边分别为a,b,c,若角A,B,C依次成等差数列,且a=$\sqrt{2}$,b=$\sqrt{3}$,则S△ABC=$\frac{{3+\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{|x+1|,x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则${x_3}-\frac{1}{{({x_1}+{x_2})x_3^2{x_4}}}$的取值范围是[$\sqrt{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.由抛物线y2=4x与直线y=x-3围成的平面图形的面积为(  )
A.$\frac{64}{3}$B.$\frac{32}{3}$C.64D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n的展开式中,只有第六项的二项式系数最大.
(Ⅰ)求该展开式中所有有理项的项数;
(Ⅱ)求该展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一个流程图,其中判断框内应填入的条件是“i≥11”或“i>10”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设正数数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),试求an,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(x-5,3),$\overrightarrow{b}$=(2,x)且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为(  )
A.2或3B.-1或6C.2D.6

查看答案和解析>>

同步练习册答案