精英家教网 > 高中数学 > 题目详情
1.复数$\frac{5+3i}{4-i}$对应的点在复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由复数代数形式的乘除运算化简复数$\frac{5+3i}{4-i}$,求出复数在复平面内对应的点的坐标,则答案可求.

解答 解:$\frac{5+3i}{4-i}$=$\frac{(5+3i)(4+i)}{(4-i)(4+i)}=\frac{17+17i}{17}=1+i$,
则复数$\frac{5+3i}{4-i}$在复平面内对应的点的坐标为:(1,1),位于第一象限.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x+y≤2}\\{x≥\frac{1}{2}}\\{y≥x}\end{array}\right.$,且数列4x,z,2y为等差数列,则实数z的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,且Sn=2an-2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=log2an,cn=$\frac{{{b}_{n}}^{2}}{{a}_{n}}$,求数列{cn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,以△ABC的边AB为直径作⊙O,⊙O与边BC的交点D恰为BC边的中点,过点D作DE⊥AC于点E.
(I)求证:DE是⊙O的切线;
(Ⅱ)若∠B=30°,求$\frac{{{A}{E}}}{DC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={f(x)|f(x)=xlnx+a}和B={h(x)|h(x)=-x2-$\frac{4}{\sqrt{e}}$x-$\frac{5}{e}$}的交集有且只有2个子集.
(1)求实数a的值;
(2)若对于任意的x∈[1,+∞),f(x)≤m(x2-1)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC中,$|{\overrightarrow{AB}}|=\sqrt{3}$,$|{\overrightarrow{AC}}|=1$,D是BC边中垂线上任意一点,则$\overrightarrow{AD}•\overrightarrow{CB}$的值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在复平面上,满足|z-1|=4的复数z的所对应的轨迹是(  )
A.两个点B.一条线段C.两条直线D.一个圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}为公差不为零的等差数列,其前n项和为Sn,满足S5-2a2=25,且a1,a4,a13恰为等比数列{bn}的前三项
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设Tn是数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和,是否存在k∈N*,使得等式1-2Tk=$\frac{1}{{b}_{k}}$成立,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b,c>0且(a+b)(a+c)=4-2$\sqrt{3}$,则2a+b+c的最小值为(  )
A.$\sqrt{3}$-1B.$\sqrt{3}$+1C.2$\sqrt{3}$+2D.2$\sqrt{3}$-2

查看答案和解析>>

同步练习册答案