精英家教网 > 高中数学 > 题目详情
13.如图,点P是半径为1的半圆弧$\widehat{AB}$上一点,若AP长度为x,则直线AP与半圆弧$\widehat{AB}$所围成的面积S关于x的函数图象为(  )
A.B.C.D.

分析 求出直线AP与半圆弧$\widehat{AB}$所围成的面积S关于x的函数S=$\frac{1}{2}x$-$\frac{1}{2}sinx$,确定S在[0,π]上单调递增,S′在[0,π]上单调递增,结合函数的图象,即可得出结论.

解答 解:∵弧AP长度为x,半径为1,
∴弧AP所对的圆心角为x,
∴直线AP与半圆弧$\widehat{AB}$所围成的面积S关于x的函数S=$\frac{1}{2}x$-$\frac{1}{2}sinx$,
∴S′=$\frac{1}{2}$-$\frac{1}{2}$cosx>0,
∴S在[0,π]上单调递增,S′在[0,π]上单调递增,
故选:A.

点评 本题考查函数的图象,考查导数知识的运用,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设Sn为等差数列{an}的前n项和,且a1-a7+a13=6,则S13=(  )
A.78B.91C.39D.26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,有下列三个命题:
①若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$;
②若|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,则$\overrightarrow{a}$∥$\overrightarrow{b}$;
③$\overrightarrow{a}$=(-1,1)在$\overrightarrow{b}$=(3,4)方向上的投影为$\frac{1}{5}$;
④非零向量$\overrightarrow{a}$和$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为60°.
其中真命题的序号为②③(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{1}{3}$|x|3-ax2+(6-a)|x|+b(a,b∈R),若f(x)有六个不同的单调区间,则实数a的取值范围为(  )
A.a<-2,或a>0B.0<a<1C.1<a<3D.2<a<6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(x+m)lnx在点(1,f(1))处的切线与直线y=2x-3平行.
(1)求f(x)在区间[e,+∞)上的最小值;
(2)若对任意x∈(0,1),都有$\frac{1}{a}$f(x)+2-2x<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.甲射击命中目标的概率是$\frac{1}{4}$,乙命中目标的概率是$\frac{1}{3}$,丙命中目标的概率是$\frac{1}{2}$,现在三人同时射击目标,则目标被击中的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.化简求值:
(1)sin(-1320°)cos1110°+cos(-1020°)sin750°
(2)$\frac{si{n}^{2}(α-2π)cos(3π+α)}{cos(\frac{3π}{2}-α)cos(α-π)sin(-α-3π)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读如图所示的程序框图,运行相应程序,则输出的S=(  )
A.2.$\stackrel{•}{6}$B.3.0$\stackrel{•}{6}$C.4.1$\stackrel{•}{6}$D.4.5$\stackrel{•}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.三棱柱ABC-A1B1C1中,侧棱AA1⊥面ABC,AC1⊥面CBA1,AC1∩A1C=F.
(1)证明:A1C1⊥B1C1
(2)设A1C1=B1C1=2,E为AB的中点,求E点到FC1B1的距离.

查看答案和解析>>

同步练习册答案