精英家教网 > 高中数学 > 题目详情
7.已知i为虚数单位,m,n都为实数,且m(1+i)=1+ni,则($\frac{m+ni}{m-ni}$)2013=(  )
A.-1B.iC.1D.-i

分析 利用复数相等、复数的运算法则、周期性即可得出.

解答 解:∵m(1+i)=1+ni,即m+mi=1+ni,∴m=1,m=n,
因此m=n=1.
∴$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i.
则($\frac{m+ni}{m-ni}$)2013=$(\frac{1+i}{1-i})^{2013}$=i2013=(i4503•i=i.
故选:B.

点评 本题考查了复数相等、复数的运算法则、周期性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.方程x2+y2-4tx-2ty+3t2-4=0(t为参数)所表示的圆的圆心轨迹方程是x-2y=0(结果化为普通方程)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若命题p:(x-m)(x-m-2)≤0;命题q:|4x-3|≤1,且p是q的必要非充分条件,则实数m的取值范围是[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设全集为R,A={x|2≤x<5 }   B={ x|x>4 }  求:
①A∩B       ②A∪B       ③A∩(∁RB)       ④∁RA)∩(∁RB )

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式|x2-2|<2的解集是(  )
A.(-2,0)∪(0,2)B.(-2,2)C.(-1,0)∪(0,1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,点A(1,1),点B(3,3),点C在x轴上,当cos∠ACB取得最小值时,点C的坐标为($\sqrt{6}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列有关命题的说法正确的是(  )
A.命题:若x=y,则sinx=siny的逆否命题为真命题
B.x>2是x2-3x+2>0的必要不充分条件
C.命题:若x2=1,则x=1的否命题为“若x2=1,则x≠1”
D.命题:?x∈R使得x2+x+1<0的否定为:?x∈R均有x2+x+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,三个内角分别是A、B、C,向量$\overrightarrow{a}$=($\frac{\sqrt{5}}{2}$cos$\frac{C}{2}$,cos$\frac{A-B}{2}$),当tanA•tanB=$\frac{1}{9}$时,则|$\overrightarrow{a}$|=$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某城帘市2013年末汽车保有量30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车3万辆,该城市的环境承载能力要求汽车保有量不超过45万辆.
(1)求2014年,2015年末的汽车保有量;
(2)将来该城市的汽车保有量会不会超出环境承载能力,若会,求出到哪一年末会超出.

查看答案和解析>>

同步练习册答案