精英家教网 > 高中数学 > 题目详情
边长为4的正四面体P-ABC中,E为PA的中点,则平面EBC与平面ABC所成锐二面角的余弦值为
 
考点:二面角的平面角及求法,与二面角有关的立体几何综合题
专题:综合题,空间角
分析:取BC的中点F,连接EF,AF,证明∠EFA为平面EBC与平面ABC所成锐二面角,求出△AEF的三边,即可求出平面EBC与平面ABC所成锐二面角的余弦值.
解答: 解:取BC的中点F,连接EF,AF,
∵四面体P-ABC为正四面体,
∴EF⊥BC,AF⊥BC,
∴∠EFA为平面EBC与平面ABC所成锐二面角,
∵边长为4,E为PA的中点,
∴EA=2,AF=2
3
,EF⊥AP,
∴EF=
(2
3
)2-4
=2
2

∴cos∠EFA=
EF
AF
=
2
2
2
3
=
6
3

故答案为:
6
3
点评:本题考查面面角,考查学生的计算能力,正确作出面面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求直线DH与平面BDEF所成角的正弦值;
(Ⅲ)求二面角H-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并确定取得最小值时x的值.列表如下:
x0.511.51.71.922.12.22.33457
y8.554.174.054.00544.0054.024.044.355.87.57
请观察表中y值随x值变化的特点,完成以下的问题.
(1)写出f(x)=x+
4
x
,x∈(0,+∞)
的单调区间;
(2)证明:函数f(x)=x+
4
x
(x>0)
在区间(0,2)单调递减;
(3)若不等式2x-2k≤1-
8
x
对x<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式4x2+9y2≥2kxy对一切正数x,y恒成立,则整数k的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=|
b
|=1,且
a
b
的夹角为
π
3
,O为平面直角坐标系的原点,点A、B满足
OA
=2
a
+
b
OB
=3
a
-
b
,则△OAB的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,m为正整数,若a和b除以m的余数相同,则称a和b对m同余.记a≡b(mod m),已知a=2+2×3+2×32+…+2×32003,b≡a(mod3),则b的值可以是
 
(写出以下所有满足条件的序号)
①1007;②2013;③3003;④6002.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-x2+2x+1的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠ABC=
π
4
,AB=
2
,BC=3,则sin∠BAC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A,B,C所对的边为a,b,c;则下列命题正确的是(  )
①若ab>c2;则C
π
3

②若a+b>2c;则C<
π
3

③若a3+b3=c3;则C
π
2

④若(a+b)c<2ab;则C
π
2
A、②③④B、①②③
C、①②④D、①③④

查看答案和解析>>

同步练习册答案