精英家教网 > 高中数学 > 题目详情
2.用数学归纳法证明1+a1+a2+…+an+1=f(n)(n∈N*),在验证n=1时,左边所得的项为(  )
A.1B.1+a1+a2C.2D.1+a1

分析 由等式1+a1+a2+…+an+1=f(n)(n∈N*),当n=1时,n+1=2,而等式左边起始为1的连续的正整数的和,由此易得答案.

解答 解:在1+a1+a2+…+an+1=f(n)(n∈N*)中,
当n=1时,左边=1+a1+a2
故选B.

点评 本题考查的知识点是数学归纳法的步骤,在数学归纳法中,第一步是论证n=1时结论是否成立,此时一定要分析等式两边的项,不能多写也不能少写,否则会引起答案的错误.解此类问题时,注意n的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知$θ∈(0,\frac{π}{2})$,$sinθ=\frac{3}{5}$.
(Ⅰ)求$sin(θ-\frac{π}{6})$的值;
(Ⅱ)求tan2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知倾斜角为α的直线l与直线x-2y+2=0平行,则sinα的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$-\frac{{\sqrt{5}}}{5}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域$\left\{\begin{array}{l}x≤1\\ y≤2\\ x+y≥2\end{array}\right.$上一个动点,则$\overrightarrow{OA}$•$\overrightarrow{OM}$的最大值为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设全集U=R,若集合A={x|x2+x=0},B={x|x2-x≤0},则A∩B={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果一组数据a1,a2,a3,a4,a5,a6的方差是2,那么另一组数据2a1,2a2,2a3,2a4,2a5,2a6的方差是(  )
A.2B.6C.8D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知下列命题:
①已知a,b是实数,若a+b是有理数,则a,b都是有理数;
②若a+b≥2,则a,b中至少有一个不小于1;
③关于x的不等式ax+b>0的解为$x>-\frac{b}{a}$;
④“方程ax2+bx+c=0有一根为1”的充要条件是“a+b+c=0”
其中真命题的序号是②④(请把所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知公差不为0的等差数列{an},等比数列{bn}满足:a1=b1=1,a2=b2,2a3-b3=1.
(1)求数列{an},{bn}的通项公式;
(2)设数列{$log_3^{b_n}$}的前项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i为虚数单位,则复数$\frac{1-i}{1+i}$的模为(  )
A.0B.$\sqrt{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案