精英家教网 > 高中数学 > 题目详情
11.已知公差不为0的等差数列{an},等比数列{bn}满足:a1=b1=1,a2=b2,2a3-b3=1.
(1)求数列{an},{bn}的通项公式;
(2)设数列{$log_3^{b_n}$}的前项和为Sn,求Sn

分析 (1)根据等比数列和等差数列通项公式,列方程即可求公差和公比,即可求得数列{an},{bn}的通项公式;
(2)由题意可知:求得log33n-1=n-1,根据等差数列前n项和公式,即可求得Sn

解答 解:(1)由设等差的公差为d,首项a1,等比数列{bn}公比为q,首项为b1
则a1=1,b1=1,$\left\{\begin{array}{l}{{a}_{1}+d={b}_{1}q}\\{2({a}_{1}+2d)-{b}_{1}{q}^{2}=1}\end{array}\right.$,
即$\left\{\begin{array}{l}{1+d=q}\\{2(1+2d)-{q}^{2}=1}\end{array}\right.$,整理得:$\left\{\begin{array}{l}{d=2}\\{q=3}\end{array}\right.$或$\left\{\begin{array}{l}{d=0}\\{q=1}\end{array}\right.$(舍去),
∴an=a1+(n-1)d=2n-1,bn=b1qn-1=3n-1
∴数列{an}通项公式an=2n-1,{bn}的通项公式bn=3n-1
(2)$log_3^{b_n}$=log33n-1=n-1,
则Sn=0+1+2+…+(n-1)=$\frac{n(n-1)}{2}$,
∴Sn=$\frac{n(n-1)}{2}$.

点评 本题考查等比数列及等差数列的通项公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,某处立交桥为一段圆弧AB.已知地面上线段AB=40米,O为AB中点.桥上距离地面最高点P,且OP高5米.工程师在OB中点C处发现他的正上方桥体有裂缝.需临时找根直立柱,立于C处,用于支撑桥体.求直立柱的高度.(精确到0.01米).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用数学归纳法证明1+a1+a2+…+an+1=f(n)(n∈N*),在验证n=1时,左边所得的项为(  )
A.1B.1+a1+a2C.2D.1+a1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于直线l,m及平面α,β,下列命题正确的是(  )
A.若l∥α,α∩β=m,则l∥mB.若l⊥α,l∥β,则α⊥β
C.若l∥m,m?α,则l∥αD.若l∥α,m⊥l,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若z∈C,且|z|=1,则|z-i|的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)周期为T(常数),则命题“?x∈R,f(x)=f(x+T)”的否定是(  )
A.?x∈R,f(x)≠f(x+T)B.?x∈R,f(x)≠f(x+T)C.?x∈R,f(x)=f(x+T)D.?x∈R,f(x)=f(x+T)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{2}+{y^2}=1$的右焦点为F,不垂直x轴且不过F点的直线l与椭圆C相交于A,B两点.
(Ⅰ)若直线l经过点P(2,0),则直线FA、FB的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由;
(Ⅱ)如果FA⊥FB,原点到直线l的距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈[-e,0)时,f(x)=ax-ln(-x).
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在实数a,使得当x∈(0,e]时,f(x)的最大值是-3.如果存在,求出a的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设D为不等式组$\left\{{\begin{array}{l}{x+y≤1}\\{2x-y≥-1}\\{x-2y≤1}\end{array}}\right.$,表示的平面区域,点B(a,b)为第一象限内一点,若对于区域D内的任一点A(x,y)都有$\overrightarrow{OA}•\overrightarrow{OB}≤1$成立,则a+b的最大值等于(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案