精英家教网 > 高中数学 > 题目详情
6.函数f(x)对一切实数x都满足f(1-x)=f(x),并且方程f(x)=0有三个实根,则这三个实根的和为$\frac{3}{2}$.

分析 求出函数的对称轴,通过函数的零点个数,转化求解即可.

解答 解:函数f(x)对一切实数x都满足f(1-x)=f(x),可知函数的对称轴为:x=$\frac{1}{2}$,
方程f(x)=0有三个实根,可知一个根是$\frac{1}{2}$,另外两个根关于x=$\frac{1}{2}$对称,
所以,这三个实根的和为:$\frac{1}{2}+1$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查函数的零点个数的判断与应用,考查函数的垂直的判断与应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列对于函数f(x)=3+cos2x,x∈(0,3π)的判断正确的是(  )
A.函数f(x)的周期为π
B.对于?a∈R,函数f(x+a)都不可能为偶函数
C.?x0∈(0,3π),使f(x0)>4
D.函数f(x)在区间$[\frac{π}{2},\frac{5π}{4}]$内单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}是首项为2018,公比为2018的等比数列,设数列{$\frac{1}{lo{g}_{2018}{a}_{n}•lo{g}_{2018}{a}_{n+1}}$}的前n项和为Sn,则S1•S2•S3•…S519=$\frac{1}{520}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若圆锥的侧面展开图是半径为5、圆心角为$\frac{6π}{5}$的扇形,则该圆锥的体积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,A,B,C是△ABC的三个内角,若sin(A+B-C)=sin(A-B+C),则△ABC的形状为等腰三角形或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知椭圆的两焦点为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),离心率e=$\frac{\sqrt{3}}{2}$.求此椭圆的方程;
(2)过点(3,-2)且与椭圆4x2+9y2=36有相同焦点的椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$f(x)=alnx+\frac{1}{3}{x^3}$,若对任意两个不等的正实数x1、x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>3$恒成立,则实数a的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在所有的两位数中,个位数字大于十位数字的两位数的个数为(  )
A.18B.36C.72D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)求函数$f(x)=\frac{1}{{1+\frac{1}{x}}}$的定义域;
(2)求函数$f(x)=x+\sqrt{x-1}$的值域;
(3)画出函数$f(x)=|{x+1}|+\sqrt{{{(x-2)}^2}}$的图象并通过图象写出值域以及单调区间.

查看答案和解析>>

同步练习册答案