分析 先确定每行首项的规律,再确定aij,即可求得结论.
解答 解:解:由题意,a1,1=$\frac{1}{4}$,∵每一列成等差数列,∴ai,1=a1,1+(i-1)×$\frac{1}{4}$=$\frac{i}{4}$,
∵从第三行起,每一行的数成等比数列,且每一行的公比相等,
∴ai,j=ai,1×($\frac{1}{2}$)j-1=$\frac{i}{4}$×($\frac{1}{2}$)j-1=i×($\frac{1}{2}$)j+1,
∴a5,j=5($\frac{1}{2}$)j+1,ai,5=i×($\frac{1}{2}$)5+1=$\frac{i}{64}$
故答案为:5($\frac{1}{2}$)j+1,$\frac{i}{64}$
点评 本题考查数列的性质和应用,考查学生的读图能力,寻找数量间的相互关系,总结规律是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±1 | B. | ±$\sqrt{2}$ | C. | ±$\sqrt{3}$ | D. | ±2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com