分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答
解:设z=x+4y,得y=-$\frac{1}{4}x+\frac{z}{4}$,
平移直线y=-$\frac{1}{4}x+\frac{z}{4}$,由图象可知当直线y=-$\frac{1}{4}x+\frac{z}{4}$经过点A时,直线y=-$\frac{1}{4}x+\frac{z}{4}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{y=x}\\{x+2y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=\frac{2}{3}}\end{array}\right.$,即A($\frac{2}{3}$,$\frac{2}{3}$),
此时z的最大值为z=$\frac{2}{3}$+4×$\frac{2}{3}$=$\frac{10}{3}$.
故答案为:$\frac{10}{3}$.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.注意目标函数的几何意义.
科目:高中数学 来源: 题型:选择题
| A. | [-12,6] | B. | [-6,12] | C. | [-3,12] | D. | [6,12] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | 2$\sqrt{2}$π | C. | (1+$\sqrt{2}$)π | D. | (1+$\frac{\sqrt{2}}{2}$)2π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com