3£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=sin¦È-cos¦È}\\{y=sin2¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£»ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=$\sqrt{2}$£¨¦ÈΪ³£Êý£©£®
£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³Ì¼°C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÇúÏßC2Óë×ø±êÖá·Ö±ð½»ÓÚA¡¢BÁ½µã£¬PΪÇúÏßC1Éϵ͝µãÇó¡÷PABÃæ»ýµÄ·¶Î§£®

·ÖÎö £¨1£©½«C1²ÎÊý·½³ÌµÄµÚһʽƽ·½ºÍµÚ¶þʽÏà¼ÓÏûÈ¥²ÎÊý¼´¿ÉµÃ³öÆÕͨ·½³Ì£¬½«C2µÄ¼«×ø±ê·½³ÌÕ¹¿ª£¬¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµµÃ³öÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó³ö|AB|£¬Çó³öPµ½Ö±ÏßC2µÄ×î¶Ì¾àÀë¼´¿ÉµÃ³öÈý½ÇÐÎÃæ»ýµÄ×îСֵ£®

½â´ð ½â£º£¨1£©¡ß$\left\{\begin{array}{l}{x=sin¦È-cos¦È}\\{y=sin2¦È}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{{x}^{2}=1-2sin¦È}\\{y=sin2¦È}\end{array}\right.$£¬
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪx2+y=1£®¼´y=-x2+1£®
¡ß¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=$\sqrt{2}$£¬¡à¦Ñcos¦È+¦Ñsin¦È=2£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx+y-2=0£®
£¨2£©A£¨2£¬0£©£¬B£¨0£¬2£©£®¡à|AB|=2$\sqrt{2}$£®
ÉèÇúÏßC1£ºy=-x2+1µÄбÂʶÔÓÚ-1µÄÇÐÏß·½³ÌΪy=-x+b£¬
ÇеãΪ£¨x0£¬y0£©£¬Ôò$\left\{\begin{array}{l}{-2{x}_{0}=-1}\\{{y}_{0}=-{x}_{0}+b}\\{{y}_{0}=-{{x}_{0}}^{2}+1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{x}_{0}=\frac{1}{2}}\\{{y}_{0}=\frac{3}{4}}\\{b=\frac{5}{4}}\end{array}\right.$£®
¡àPµ½Ö±ÏßC2µÄ×îС¾àÀëd=$\frac{\frac{3}{4}}{\sqrt{2}}$=$\frac{3\sqrt{2}}{8}$£®
¡à¡÷PABµÄ×îÐ¡Ãæ»ýΪSmin=$\frac{1}{2}¡Á2\sqrt{2}¡Á\frac{3\sqrt{2}}{8}$=$\frac{3}{4}$£®
¡à¡÷PABÃæ»ýµÄ·¶Î§ÊÇ£º[$\frac{3}{4}$£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªl1£¬l2·Ö±ðΪ˫ÇúÏß$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄÁ½Ìõ½¥½üÏߣ¬ÇÒÓÒ½¹µã¹ØÓÚl1µÄ¶Ô³ÆµãÔÚl2ÉÏ£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®2D£®$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªa£¬bΪ·ÇÁãÏòÁ¿£¬ÔòÏÂÁÐÃüÌâÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
¢ÙÈô|a|+|b|=|a+b|£¬ÔòaÓëb·½ÏòÏàͬ£»
¢ÚÈô|a|+|b|=|a-b|£¬ÔòaÓëb·½ÏòÏà·´£»
¢ÛÈô|a|+|b|=|a-b|£¬ÔòaÓëbÓÐÏàµÈµÄÄ££»
¢ÜÈô|a|-|b|=|a-b|£¬ÔòaÓëb·½ÏòÏàͬ£®
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªx£¬yÂú×ãÌõ¼þ$\left\{\begin{array}{l}{x-2¡Ü0}\\{x-2y¡Ü0}\\{x+2y-8¡Ü0}\end{array}\right.$£¬Èôz=2x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®9B£®8C£®7D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£¬Èô$\frac{1}{a}$£¬$\frac{1}{b}$£¬$\frac{1}{c}$³ÉµÈ²îÊýÁУ¬ÔòcosB+sinBµÄȡֵ·¶Î§Îª£¨1£¬$\sqrt{2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=|£¨ax-1£©£¨x-1£©|£¨a¡ÊR£©£®
£¨1£©µ±a=$\frac{1}{3}$ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±a£¾1ʱ£¬Èôº¯Êýg£¨x£©=f£¨x£©-|x-a|ÖÁÉÙÓÐÈý¸öÁãµã£¬ÇóaµÄȡֵ·¶Î§£»
£¨3£©µ±0¡Üa¡Ü1ʱ£¬Èô¶ÔÈÎÒâµÄx¡Ê[0£¬2]£¬¶¼ÓÐm¡Ýf£¨x£©ºã³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÇóÖµ|log35-2|+log925+£¨$\frac{1}{16}$£©${\;}^{-\frac{1}{4}}$-e0=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÇóÏÂÁз½³ÌµÄ½â¼¯£º
£¨1£©sin$\frac{x}{2}$-cos$\frac{x}{2}$=1£»
£¨2£©sinx-$\sqrt{3}$cosx=$\sqrt{2}$£»
£¨3£©$\sqrt{2}$sin2x+$\sqrt{2}$cos2x-1=0£»
£¨4£©sinx=2sin£¨$\frac{¦Ð}{3}$-x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚij´ÎÁª¿¼Êýѧ²âÊÔÖУ¬Ñ§Éú³É¼¨¦Î·þ´ÓÕý̬·Ö²¼£¨100£¬¦Ò2£©£¨¦Ò£¾0£©£¬Èô¦ÎÔÚ£¨80£¬120£©ÄڵĸÅÂÊΪ0.8£¬ÔòÂäÔÚ£¨0£¬80£©ÄڵĸÅÂÊΪ0.1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸