分析 直接利用两角和与差的三角函数化简方程,然后求解三角方程的解集.
解答 解:(1)sin$\frac{x}{2}$-cos$\frac{x}{2}$=1;
可得sin($\frac{x}{2}$$-\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
$\frac{x}{2}$$-\frac{π}{4}$=2kπ+$\frac{π}{2}$±$\frac{π}{4}$,k∈Z,
解得{x|x=4kπ+$\frac{3π}{2}$±$\frac{π}{2}$,k∈Z}.
(2)sinx-$\sqrt{3}$cosx=$\sqrt{2}$;
可得sin(x-$\frac{π}{3}$)=$\frac{\sqrt{2}}{2}$,
x-$\frac{π}{3}$=2kπ+$\frac{π}{2}$±$\frac{π}{4}$,k∈Z,
解得{x|x=2kπ+$\frac{5π}{6}$±$\frac{π}{4}$,k∈Z}.
(3)$\sqrt{2}$sin2x+$\sqrt{2}$cos2x-1=0;
可得sin(2x+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
2x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$±$\frac{π}{4}$,k∈Z,
解得{x|x=kπ+$\frac{π}{8}$±$\frac{π}{8}$,k∈Z}.
(4)sinx=2sin($\frac{π}{3}$-x)=$\sqrt{3}$cosx-sinx.
2sinx=$\sqrt{3}$cosx,
tanx=$\frac{\sqrt{3}}{2}$.
可得x=kπ+arctan$\frac{\sqrt{3}}{2}$,k∈Z,
解得{x|x=kπ+arctan$\frac{\sqrt{3}}{2}$,k∈Z}.
点评 本题考查三角方程的解法,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 增函数 | B. | 减函数 | C. | 先减后增 | D. | 先增后减 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{6}$ | C. | $2\sqrt{3}$ | D. | $2\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{36}{65}$ | B. | -$\frac{3}{13}$ | C. | $\frac{4}{13}$ | D. | $\frac{48}{65}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com