精英家教网 > 高中数学 > 题目详情
13.在某次联考数学测试中,学生成绩ξ服从正态分布(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则落在(0,80)内的概率为0.1.

分析 根据ξ服从正态分布N(100,σ2),得到曲线的对称轴是直线x=100,利用ξ在(80,120)内取值的概率为0.8,即可求得结论.

解答 解:∵ξ服从正态分布N(100,σ2
∴曲线的对称轴是直线x=100,
∵ξ在(80,120)内取值的概率为0.8,
∴ξ在(0,100)内取值的概率为0.5,
∴ξ在(0,80)内取值的概率为0.5-0.4=0.1.
故答案为:0.1.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,主要考查正态曲线的对称性,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=sinθ-cosθ}\\{y=sin2θ}\end{array}\right.$(θ为参数);以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$(θ为常数).
(1)求曲线C1的普通方程及C2的直角坐标方程;
(2)设曲线C2与坐标轴分别交于A、B两点,P为曲线C1上的动点求△PAB面积的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC的重心为O,过O任做一直线分别交边AB,AC于P,Q两点,设$\overrightarrow{AP}=m\overrightarrow{AB},\overrightarrow{AQ}=n\overrightarrow{AC}$,则4m+9n的最小值是$\frac{25}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图,则这个几何体的表面积是(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$2\sqrt{3}$D.$2\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知不等式x2-x≤0的解集为[a,b],则${∫}_{a}^{b}$x(x-1)dx=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x>0,y>0,lg2x+lg8y=lg2,则$\frac{1}{x}+\frac{2}{y}$的最小值是(  )
A.$7+2\sqrt{6}$B.$4+\sqrt{3}$C.$7+\sqrt{6}$D.$4+2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列向量与向量$\overrightarrow{a}$=(-3,4)垂直,且是单位向量的为(  )
A.(-4,3)B.(-3,-4)C.(-$\frac{4}{5}$,$\frac{3}{5}$)D.(-$\frac{4}{5}$,-$\frac{3}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平面直角坐标系中,以x轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点($\frac{12}{13}$,$\frac{5}{13}$)和(-$\frac{3}{5}$,$\frac{4}{5}$),那么cosαsinβ等于(  )
A.-$\frac{36}{65}$B.-$\frac{3}{13}$C.$\frac{4}{13}$D.$\frac{48}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距F1F2的长为2,经过第二象限内一点P(m,n)的直线$\frac{mx}{{a}^{2}}$+$\frac{ny}{{b}^{2}}$=1与圆x2+y2=a2交于A,B两点,且OA=$\sqrt{2}$.
(1)求PF1+PF2的值;
(2)若$\overrightarrow{AB}$•$\overrightarrow{{F}_{1}{F}_{2}}$=$\frac{8}{3}$,求m,n的值.

查看答案和解析>>

同步练习册答案