分析 (1)由OA=$\sqrt{2}$,可得a=$\sqrt{2}$.把点P(m,n)代入直线方程$\frac{mx}{{a}^{2}}$+$\frac{ny}{{b}^{2}}$=1,可得:$\frac{{m}^{2}}{{a}^{2}}+\frac{{n}^{2}}{{b}^{2}}$=1,可得点P在椭圆上,即可得出.
(2)由a=$\sqrt{2}$,c=1,可得b2=a2-c2=1.设A(x1,y1),B(x2,y2).联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=2}\\{\frac{mx}{2}+ny=1}\end{array}\right.$,化为:(4n2+m2)x2-4mx+4-8n2=0.$\overrightarrow{AB}$•$\overrightarrow{{F}_{1}{F}_{2}}$=$\frac{8}{3}$,化为2(x2-x1)=$\frac{8}{3}$,即x2-x1=$\frac{4}{3}$,$({x}_{1}+{x}_{2})^{2}$-4x1x2=$\frac{16}{9}$,把根与系数的关系代入可得:56n4+10n2m2-36n2-m4=0,又$\frac{{m}^{2}}{2}+{n}^{2}$=1,联立解出即可得出.
解答 解:(1)∵OA=$\sqrt{2}$,∴a=$\sqrt{2}$.
∵把点P(m,n)代入直线方程$\frac{mx}{{a}^{2}}$+$\frac{ny}{{b}^{2}}$=1,可得:$\frac{{m}^{2}}{{a}^{2}}+\frac{{n}^{2}}{{b}^{2}}$=1,
∴点P在椭圆上,
∴PF1+PF2=2a=2$\sqrt{2}$.
(2)由a=$\sqrt{2}$,c=1,∴b2=a2-c2=1.
设A(x1,y1),B(x2,y2).
联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=2}\\{\frac{mx}{2}+ny=1}\end{array}\right.$,化为:(4n2+m2)x2-4mx+4-8n2=0,
∴x1+x2=$\frac{4m}{4{n}^{2}+{m}^{2}}$,x1x2=$\frac{4-8{n}^{2}}{4{n}^{2}+{m}^{2}}$.
∵$\overrightarrow{AB}$•$\overrightarrow{{F}_{1}{F}_{2}}$=$\frac{8}{3}$,∴(x2-x1,y2-y1)•(2,0)=$\frac{8}{3}$,
化为2(x2-x1)=$\frac{8}{3}$,即x2-x1=$\frac{4}{3}$,
∴$({x}_{1}+{x}_{2})^{2}$-4x1x2=$\frac{16}{9}$,
代入可得:$\frac{16{m}^{2}}{(4{n}^{2}+{m}^{2})^{2}}$-$\frac{4(4-8{n}^{2})}{4{n}^{2}+{m}^{2}}$=$\frac{16}{9}$,
化为:56n4+10n2m2-36n2-m4=0,
又$\frac{{m}^{2}}{2}+{n}^{2}$=1,
把m2=2-2n2代入化为8n4-2n2-1=0,
联立解得m2=1,n2=$\frac{1}{2}$.
∵点P在第二象限,
∴取m=-1,n=$\frac{\sqrt{2}}{2}$.
点评 本题考查了椭圆的标准方程及其性质、直线与圆相交问题、一元二次方程的根与系数的关系、向量的数量积运算性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 课外体育不达标 | 课外体育达标 | 合计 | |
| 男 | 60 | 30 | 90 |
| 女 | 90 | 20 | 110 |
| 合计 | 150 | 50 | 200 |
| P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | (0,2] | C. | (1,2) | D. | (1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com