精英家教网 > 高中数学 > 题目详情
设△ABC的内角A,B,C的对边分别为a,b,c.已知b2+c2=a2+
3
bc,
(1)求角A的大小;
(2)求sin(B-C)+2cosBsinC的值.
考点:余弦定理
专题:三角函数的求值
分析:(1)利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,即可确定出A的度数;
(2)原式利用两角和与差的正弦函数公式化简,整理后再利用诱导公式变形,将sinA的值代入计算即可求出值.
解答: 解:(1)∵b2+c2=a2+
3
bc,即b2+c2-a2=
3
bc,
∴cosA=
b2+c2-a2
2bc
=
3
2

∵A为三角形的内角,
∴A=
π
6

(2)∵sinA=sin
π
6
=
1
2

∴sin(B-C)+2cosBsinC=sinBcosC-cosBsinC+2cosBsinC=sinBcosC+cosBsinC=sin(B+C)=sinA=
1
2
点评:此题考查了余弦定理,以及两角和与差的正弦函数公式,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从某年级学生中,随机抽取50人,其体重(单位:千克)的频数分布表如下:
分组(体重) [55,60} [60,65) [65,70) [70,75)
频数(人) 15 20 10 5
(Ⅰ)根据频数分布表计算体重在[55,60)的频率;
(Ⅱ)用分层抽样的方法从这50人中抽取10人,其中体重在[55,60)和[65,70)中共有几人?
(Ⅲ)在(Ⅱ)中抽出的体重在[55,60)和[65,70)的人中,任取2人,求体重在[55,60)和[65,70)中各有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且|AB|=2
3
,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R+,且满足log4(2a+b)=log2
ab
,则8a+b的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y2=x+1},B={y|y=-x2-4x-2},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A、B、C对边分别是a,b,c,且满足2
AB
BC
=(a+c+b)(a+c-b).
(1)求角B的大小;
(2)求2
3
cos2
C
2
-sin(
3
-A)的最大值,并求取得最大值时角A,C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1﹙a>b>0﹚与x轴的正半轴交于点A,O是原点,若椭圆上存在一点M,使MA⊥MO,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a、b、c为实数,且a+b+c=1,则a2+b2+c2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
5i
1+2i
(i为虚数单位)的虚部是
 

查看答案和解析>>

同步练习册答案