精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|x2-6x+8≤0},B={1,2,3,4,5},则阴影部分所表示的集合的元素个数为(  )
A.1B.2C.3D.4

分析 由阴影部分表示的集合为A∩B,然后根据集合的运算即可.

解答 解:由Venn图可得阴影部分对应的集合为A∩B,
A={x|x2-6x+8≤0}={x|2≤x≤4},
则A∩B={2,3,4},
则对应集合元素个数为3,
故选:C

点评 本题主要考查集合的基本运算,利用Venn图确定集合的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x-a|.
(1)若a=1,解不等式f(x)≥4-|x+1|;
(2)若不等式f(x)≤1的解集为$[{0,2}],\frac{1}{m}+\frac{1}{2n}=a({m>0,n>0})$,求mn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,用茎叶图表示如图:
(1)根据茎叶图中的数据完成下面的2×2列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?
及格(≥60)不及格合计
很少使用手机20727
经常使用手机101323
合计302050
(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为P1,P2,P2=0.4,若P1-P2≥0.3,则此二人适合结为学习上互帮互助的“师徒”,记X为两人中解决此题的人数,若E(X)=1.12,问两人是否适合结为“师徒”?
参考公式及数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥K00.100.050.025
K02.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合U={-1,0,1},B={x|x=m2,m∈U},则∁UB=(  )
A.{0,1}B.{-1,0,1}C.D.{-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的标准方程为$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{3}}{2}$,且椭圆上的点到其中一个焦点最大距离为2+$\sqrt{3}$,抛物线C以原点为顶点,以椭圆与x轴正半轴的交点为焦点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知点M(2,0),问:x轴上是否存在一定点P,使得对于抛物线C上的任意两点A和B,当$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R)时,恒有点M到直线PA与PB的距离相等?若存在,则求点P的坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参加抽奖活动的人数越来越多,该分店经理对开业前7天参加抽奖活动的人数进行统计,y表示开业第x天参加抽奖活动的人数,得到统计表格如下:
 x 1 2 3 4 5 6 7
 y 510 14 15 17 
经过进一步统计分析,发现y与x具有线性相关关系.
(Ⅰ)若从这7天随机抽取两天,求至少有1天参加抽奖人数超过10的概率;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$,并估计若该活动持续10天,共有多少名顾客参加抽奖.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i-1}^{7}{x}_{i}^{2}$=140,$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=364.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在公差大于0的等差数列{an}中,2a7-a13=1,且a1,a3-1,a4+9成等比数列,则数列{(-1)n-1an}的前21项和为(  )
A.21B.-21C.441D.-441

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某商场搞促销,规定顾客购物达到一定金额可抽奖,最多有三次机会,每次抽中,可依次分别获得20元、30元、50元奖金,顾客每次抽中后,可以选择带走所得奖金,结束抽奖;也可以选择继续抽奖,若有任何一次没有抽中,则连同前面所得奖金也全部归零,结束抽奖,设顾客甲第一次、第二次、第三次抽中的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,选择继续抽奖的概率均为$\frac{1}{2}$,且每次是否抽中互不影响.
(Ⅰ)求顾客甲第一次抽中,但所得奖金为零的概率;
(Ⅱ)设该顾客所得奖金总数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时f(x)=($\frac{1}{2}$)x-1,若关于x的方程f(x)-loga(x+2)=0(a>1)在区间[-2,6]内恰有三个不同的实根,则实数a的取值范围是($\root{3}{4}$,2).

查看答案和解析>>

同步练习册答案