精英家教网 > 高中数学 > 题目详情
7.某圆锥的母线和底面半径分别为2,1,则此圆锥的体积是$\frac{\sqrt{3}π}{3}$.

分析 根据圆锥的定义与性质,算出圆锥的高h,再由圆锥的体积公式即可算出此圆锥的体积.

解答 解:∵圆锥的母线长l=52,底面圆的半径r=1,
∴圆锥的高h=$\sqrt{3}$,
因此,圆锥的体积为
V=$\frac{1}{3}$πr2h=$\frac{1}{3}$π×12×$\sqrt{3}$=$\frac{\sqrt{3}π}{3}$.
故答案为:$\frac{\sqrt{3}π}{3}$.

点评 本题给出圆锥的母线长和底面圆的半径,求此圆锥的体积.着重考查了圆锥的定义与性质、圆锥的体积公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知向量序列:$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$,…$\overrightarrow{a_n}$,…满足如下条件:$|{\overrightarrow{a_1}}|=2$,$|{\overrightarrow d}|=\frac{{\sqrt{2}}}{4}$,$2\overrightarrow{a_1}•\overrightarrow d=-1$,且$\overrightarrow{a_n}-\overrightarrow{{a_{n-1}}}=\overrightarrow d$(n=2,3,4,…),则$|{\overrightarrow{a_1}}|$,$|{\overrightarrow{a_2}}|$,$|{\overrightarrow{a_3}}|$,…,$|{\overrightarrow{a_n}}|$,…中第5项最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有4个命题:
(1)三点确定一个平面.
(2)梯形一定是平面图形.
(3)平行于同一条直线的两直线平行.
(4)垂直于同一直线的两直线互相平行.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列语句:
①{0}∈N;
②x2+y2=0;
③x2>x;
④{x|x2+1=0}.
其中是命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=cos(2x-$\frac{4π}{3}$)+2cos2x,
(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值时x的集合;
(Ⅱ)已知△ABC中,角A、B、C的对边分别为a、b、c,若f(B+C)=$\frac{3}{2}$,b+c=2,a=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在正方体ABCD-A1B1C1D1中,P、Q、R分别在棱AB、BB1、CC1上,且PD、QR相交于点O.求证:O、B、C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.线段A1A2、B1B2分别是已知椭圆的长轴和短轴,F2是椭圆的一个焦点(|A1F2|>|A2F2|),若该椭圆的离心率为$\frac{{\sqrt{5}-1}}{2}$,则∠A1B1F2等于(  )
A.30°B.45°C.120°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线y=k(x-3)+4和曲线y=$\sqrt{9-{x^2}}$有且只有一个交点,则实数k的取值范围为$\left\{{\frac{7}{24}}\right\}∪({\frac{2}{3},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:x2≥2x+3;命题q:|1-$\frac{x}{2}$|<1.若p是真命题,q是假命题,求实数x的取值范围.

查看答案和解析>>

同步练习册答案