分析 (1)利用绝对值不等式,结合配方法,即可证明结论;
(2)f(4)<13,可得$\left\{\begin{array}{l}{a≥3}\\{{a}^{2}+a+1<13}\end{array}\right.$或$\left\{\begin{array}{l}{a<3}\\{{a}^{2}-a+7<13}\end{array}\right.$,即可求实数a的取值范围.
解答 (1)证明:f(x)=|x+a2|+|x-a-1|≥|x+a2-(x-a-1)|=|a2+a+1|=$(a+\frac{1}{2})^{2}$+$\frac{3}{4}$≥$\frac{3}{4}$.
(2)解:f(4)=$\left\{\begin{array}{l}{{a}^{2}+a+1,a≥3}\\{{a}^{2}-a+7,a<3}\end{array}\right.$,
∵f(4)<13,
∴$\left\{\begin{array}{l}{a≥3}\\{{a}^{2}+a+1<13}\end{array}\right.$或$\left\{\begin{array}{l}{a<3}\\{{a}^{2}-a+7<13}\end{array}\right.$,
∴-2<a<3.
点评 本题考查不等式的证明,考查不等式的解法,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1+x2<2 | B. | a<e | ||
| C. | x1x2>1 | D. | 有极小值点x0,且x1+x2<2x0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | -$\frac{1}{4}$ | C. | -$\frac{3}{4}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com