精英家教网 > 高中数学 > 题目详情
15.运行如图伪代码,则输出S的结果是$\frac{25}{24}$..

分析 模拟执行程序框图,依次写出每次循环得到的n,S的值,当n=10时,不满足条件n<10,退出循环,输出S的值为$\frac{25}{24}$.

解答 解:模拟执行程序框图,可得
S=0,n=2
满足条件n<10,S=$\frac{1}{2}$,n=4
满足条件n<10,S=$\frac{1}{2}$$+\frac{1}{4}$,n=6
满足条件n<10,S=$\frac{1}{2}$$+\frac{1}{4}$+$\frac{1}{6}$,n=8
满足条件n<10,S=$\frac{1}{2}$$+\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$=$\frac{25}{24}$,n=10
不满足条件n<10,退出循环,输出S的值为$\frac{25}{24}$.
故答案为:$\frac{25}{24}$.

点评 本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的n,S的值是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设底为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为(  )
A.$\root{3}{4V}$B.$\root{3}{6V}$C.$\root{3}{8V}$D.$\sqrt{4V}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆M:(x-2)2+y2=$\frac{1}{4}$上一动点P,抛物线C:x2=y上存在两动点A(x1,y1),B (x2,y2
(1)若M,A,B三点共线,求$\frac{{x}_{1}•{x}_{2}}{{x}_{1}+{x}_{2}}$的值
(2)设直线AB的方程为y=kx+m,已知|AB|=$\sqrt{({k}^{2}+1)(-8k-3)}$(k<-$\frac{3}{8}$),求点P到直线AB的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,PA切圆O于点A,割线PBC经过圆心O,若PB=OB=1,OD平分∠AOC,交圆O于点D,连接PD交圆O于点E,则PE的长等于(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{3\sqrt{7}}}{7}$C.$\frac{{5\sqrt{7}}}{7}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在三棱锥D-ABC中,AB=BC=CD=1,AC=$\sqrt{3}$,平面ACD⊥平面ABC,∠BCD=90°
(1)求证:CD⊥平面ABC;
(2)求直线BD与平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,AB,AD,AP两两垂直,长度分别为1,2,2,且$\overrightarrow{DC}$=2$\overrightarrow{AB}$.
(1)求直线PC与BD所成角的余弦值;
(2)求直线PB平面PCD的所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知单位向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$-k$\overrightarrow{b}$|=$\sqrt{3}$|k$\overrightarrow{a}$+$\overrightarrow{b}$|,其中k>0,则下列与向量$\overrightarrow{b}$垂直的向量可以是(  )
A.6$\overrightarrow{a}$+2$\overrightarrow{b}$B.$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$D.$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,H、M是AD、DC的中点,BF=$\frac{1}{3}$BC.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$来表示$\overrightarrow{AM}$,$\overrightarrow{HF}$;
(2)若|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,求$\overrightarrow{AM}$•$\overrightarrow{HF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若$\frac{1}{tanα-1}$无意义,则α在[0,π]内的值是$\frac{π}{4}$或$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案