【题目】如图所示,在长方体
中,AD=2,AB=AE=1,M为矩形AEHD内的一点,如果∠MGF=∠MGH,MG和平面EFG所成角的正切值为
那么点M到平面EFGH的距离是_____.
![]()
科目:高中数学 来源: 题型:
【题目】已知函数
的图象过点
和点
.
(1)求函数
的最大值与最小值;
(2)将函数
的图象向左平移
个单位后,得到函数
的图象;已知点
,若函数
的图象上存在点
,使得
,求函数
图象的对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果实系数
、
、
和
、
、
都是非零常数.
(1)设不等式
和
的解集分别是
、
,试问
是
的什么条件?并说明理由.
(2)在实数集中,方程
和
的解集分别为
和
,试问
是
的什么条件?并说明理由.
(3)在复数集中,方程
和
的解集分别为
和
,证明:
是
的充要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数
和
.
(1)
为偶函数,试判断
的奇偶性;
(2)若方程
有两个不相等的实根,当
时判断
在
上的单调性;
(3)当
时,问是否存在x的值,使满足
且
的任意实数a,不等式
恒成立?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线
由两个椭圆
:
和椭圆
:
组成,当
成等比数列时,称曲线
为“猫眼曲线”.
![]()
(1)若猫眼曲线
过点
,且
的公比为
,求猫眼曲线
的方程;
(2)对于题(1)中的求猫眼曲线
,任作斜率为
且不过原点的直线与该曲线相交,交椭圆
所得弦的中点为M,交椭圆
所得弦的中点为N,求证:
为与
无关的定值;
(3)若斜率为
的直线
为椭圆
的切线,且交椭圆
于点
,
为椭圆
上的任意一点(点
与点
不重合),求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数
的图象的顶点坐标为
,且过坐标原点O,数列
的前n项和为
,点
(
)在二次函数
的图象上.
(1)求数列
的表达式;
(2)设
(
),数列
的前n项和为
,若
对
恒成立,求实数m的取值范围;
(3)在数列
中是否存在这样的一些项,
,
,
,…
,…(
),这些项能够依次构成以
为首项,q(
,
)为公比的等比数列
?若存在,写出
关于k的表达式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,对于点
,定义变换
:将点
变换为点
,使得
其中
.这样变换
就将坐标系
内的曲线变换为坐标系
内的曲线.则四个函数
,
,
,
在坐标系
内的图象,变换为坐标系
内的四条曲线(如图)依次是
![]()
A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】德阳中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,
课 程 | 初等代数 | 初等几何 | 初等数论 | 微积分初步 |
合格的概率 |
|
|
|
|
(1)求甲同学取得参加数学竞赛复赛的资格的概率;
(2)记
表示三位同学中取得参加数学竞赛复赛的资格的人数,求
的分布列及期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为
,则
等于( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com