精英家教网 > 高中数学 > 题目详情
2.实数x,y满足$\left\{\begin{array}{l}x-4y+4≤0\\ 2x+y-10≤0\\ 5x-2y+2≥0\end{array}\right.$则$\frac{y}{x}$的最小值为$\frac{1}{2}$.

分析 由约束条件作出可行域,再由$\frac{y}{x}$的几何意义,即可行域内的动点与原点连线的斜率求解.

解答 解:由约束条件$\left\{\begin{array}{l}x-4y+4≤0\\ 2x+y-10≤0\\ 5x-2y+2≥0\end{array}\right.$作出可行域如图:

联立$\left\{\begin{array}{l}{x-4y+4=0}\\{2x+y-10=0}\end{array}\right.$,解得A(4,2),
由图可知,$\frac{y}{x}$的最小值为${k}_{OA}=\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列图象可以作为函数f(x)=$\frac{x}{{x}^{2}+a}$的图象的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数$f(x)=|{x+a+1}|+|{x-\frac{4}{a}}|,(a>0)$.
(Ⅰ)证明:f(x)≥5;
(Ⅱ)若f(1)<6成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}和{bn}中,已知${a_1}{a_2}{a_3}…{a_n}={2^{b_n}}(n∈N*)$,且a1=2,b3-b2=3,若数列{an}为等比数列.
(Ⅰ)求a3及数列{bn}的通项公式;
(Ⅱ)令${c_n}=\frac{{2{b_n}}}{n^2}$,是否存在正整数m,n(m≠n),使c2,cm,cn成等差数列?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设m、n是两条不同的直线,α、β是两个不同的平面,则m⊥β的一个充分条件是(  )
A.α⊥β且m?αB.m∥n且n⊥βC.α⊥β且m∥αD.m⊥n且n∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x>0},函数$f(x)=\sqrt{(2-x)(x-3)}$的定义域为集合B,则A∩B=(  )
A.[3,+∞)B.[2,3]C.(0,2]∪[3,+∞)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.抛物线$x=\frac{1}{4}{y^2}$的焦点到双曲线${x^2}-\frac{y^2}{3}=1$的渐近线的距离是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数f(x)=2cos2x的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,若函数g(x)在区间$[0,\frac{a}{3}]$和$[2a,\frac{7π}{6}]$上均单调递增,则实数a的取值范围是[$\frac{π}{3}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设U=R,A={-3,-2,-1,0,1,2},B={x|x≥1},则A∩(∁UB)=(  )
A.{1,2}B.{-1,0,1,2}C.{-3,-2,-1,0}D.{2}

查看答案和解析>>

同步练习册答案