精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-ax-5,x≤1}\\{\frac{a+1}{x},x>1}\end{array}\right.$是R上的增函数,则a的取值范围是[-$\frac{7}{2}$,-2].

分析 根据二次函数的性质以及反比例函数的性质得到关于a的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{a+1<0}\\{-\frac{a}{2}≥1}\\{-1-a-5≤a+1}\end{array}\right.$,
解得:-$\frac{7}{2}$≤a≤-2,
故答案为:[-$\frac{7}{2}$,-2].

点评 本题考查了二次函数以及反比例函数的性质,考查函数的单调性问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.不等式x>$\frac{1}{x}$的解集为(  )
A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若$\overrightarrow{a}$与$\overrightarrow{b}$-$\overrightarrow{c}$都是非零向量,则“$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$”是“$\overrightarrow{a}$⊥($\overrightarrow{b}$-$\overrightarrow{c}$)”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}为等比数列,其前n项和Sn=3n-1+t,则t的值为(  )
A.-1B.-3C.$-\frac{1}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=x+$\sqrt{x-2}$的值域为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x-1.
(1)求f(x)的函数解析式;
(2)作出函数f(x)的简图,写出函数f(x)的单调减区间及最值.
(3)若关于x的方程f(x)=m有两个解,试说出实数m的取值范围.(只要写出结果,不用给出证明过程)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.?x∈[-1,2]使得x2-ax-3<0恒成立,则实数a的取值范围为($\frac{1}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A={-1,3,m},集合B={3,5},若B∩A=B,则实数m=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+$\frac{π}{3}$),④y=tan(2x-$\frac{π}{6}$)中,最小正周期为π的所有函数为(  )
A.①②③B.①③④C.②④D.②③

查看答案和解析>>

同步练习册答案