精英家教网 > 高中数学 > 题目详情
△ABC中,A、B满足关系式:
1
tanA•tanB
>0,则△ABC是(  )
A、锐角三角形
B、钝角三角形
C、直角三角形
D、任意三角形
考点:三角形的形状判断,两角和与差的正切函数
专题:计算题,三角函数的求值
分析:由题意,A、B都是锐角,tanA>0,tanB>0
解答: 解:∵在△ABC中,满足
1
tanA•tanB
>0,
∴A、B都是锐角,tanA>0,tanB>0.
∴C可以是锐角、直角、钝角,
∴△ABC是任意三角形.
故选:D.
点评:本题主要考查判断三角形的形状,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

角α的终边落在y=-x(x>0)上,则sinα的值等于(  )
A、-
2
2
B、
2
2
C、±
2
2
D、±
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(5-i)-(3-i)-5i等于(  )
A、5iB、2-5i
C、2+5iD、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的一元二次方程x2-(m+1)x-m=0有两个异号实数根,则实数m的取值范围是(  )
A、m<0
B、m>0
C、-1<m<1
D、m≥1或m≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-4x=0,l过点P(1,1)的直线,则(  )
A、l与C相交
B、l与C相切
C、l与C相离
D、以上三个选项均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x
lnx
的定义域为(  )
A、(0,1)∪(1,+∞)
B、(1,+∞)
C、(0,1)
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα-cosα=-
2
,则tanα=(  )
A、-1
B、1
C、-
2
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设M、N是两个非空集合,且M={a|a∈N},则M、N 间的关系为(  )
A、M=NB、M是N的真子集
C、M是N的子集D、M∈N

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
2
x
,g(x)=a(2-lnx).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.

查看答案和解析>>

同步练习册答案