精英家教网 > 高中数学 > 题目详情
9.已知x∈(-π,0)且cosx=-$\frac{3}{5}$,则sin2x=$\frac{24}{25}$..

分析 由已知及同角三角函数关系式可求sinx,由二倍角公式即可得解.

解答 解:∵x∈(-π,0)且cosx=-$\frac{3}{5}$,
∴sinx=-$\sqrt{1-co{s}^{2}x}$=-$\frac{4}{5}$,
∴sin2x=2sinxcosx=2×$(-\frac{3}{5})×(-\frac{4}{5})$=$\frac{24}{25}$.
故答案为:$\frac{24}{25}$.

点评 本题主要考查了同角三角函数关系式,二倍角公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤1}\\{y≤a}\\{x≥0}\end{array}\right.$
(1)当不等式组表示的区域为三角形时,求a的范围;
(2)当a=2时,求$\frac{y+1}{x+2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某人射击1次,命中各环的概率如下表所示:
命中环数10环9环8环7环以下
概率0.220.380.160.24
则该人射击一次,至少命中8环的概率为0.76.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.现有高一学生9人,高二学生12人,高三学生7人,自发组织参加数学课外活动小组,从中推选两名来自不同年级的学生做一次活动的主持人,共有不同的选法(  )
A.756种B.56种C.28种D.255种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(Ⅰ)证明:$\frac{sinα}{1+cosα}$=$\frac{1-cosα}{sinα}$.                            
(Ⅱ)已知圆的方程是x2+y2=r2,则经过圆上一点M(x0,y0)的切线方程为x0x+y0y=r2,类比上述性质,试写出椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1类似的性质.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足an=$\frac{kn-3}{n-\frac{3}{2}}$(k为常数).
(1)若数列{an是等差数列,求k的值;
(2)若k≠2,求数列{an}中的最大项和最小项;
(3)若an>$\frac{k{2}^{n}+(-1)^{n}}{{2}^{n}}$,对任意的n∈N*恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数a,b,c,d满足$\frac{{a}^{2}-2lna}{b}$=$\frac{3c-4}{d}$=1,则$\sqrt{(a-c)^{2}+(b-d)^{2}}$的最小值为(  )
A.$\frac{(1-ln2)\sqrt{10}}{5}$B.$\frac{(1+ln2)\sqrt{10}}{5}$C.$\frac{(3-ln2)\sqrt{10}}{5}$D.$\frac{(3+ln2)\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商场欲经销某种商品,考虑到不同顾客的喜好,决定同时销售A、B两个品牌,根据生产厂家营销策略,结合本地区以往经销该商品的大数据统计分析,A品牌的销售利润y1与投入资金x成正比,其关系如图1所示,B品牌的销售利润y2与投入资金x的算术平方根成正比,其关系如图2所示(利润与资金的单位:万元).
(1)分别将A、B两个品牌的销售利润y1、y2表示为投入资金x的函数关系式;
(2)该商场计划投入5万元经销该种商品,并全部投入A、B两个品牌,问:怎样分配这5万元资金,才能使经销该种商品获得最大利润,其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求(1)an=-2n2+9n+3的最大值;
(2)an=$\frac{n-1}{n+3}$的最小值.

查看答案和解析>>

同步练习册答案