精英家教网 > 高中数学 > 题目详情
比较大小:log56
 
log32(按大小关系填“<”或“>”).
考点:对数值大小的比较
专题:函数的性质及应用
分析:利用对数函数的单调性即可得出.
解答: 解:∵log56>log55=1,log32<log33=1.
∴log56>log32.
故答案为:>.
点评:本题考查了对数函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log0.5(3-x),则函数f(x)的(  )
A、单调递增区间是(-∞,3)
B、单调递增区间(0,3)
C、单调递减区间是(-∞,3)
D、单调递减区间(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边a,b,c满足a:b:c=3:5:7,则△ABC中的最大内角为(  )
A、60°B、90°
C、120°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x>0},B={x|x≤1},则A∩B=(  )
A、{x|x>0}
B、{x|x≤1}
C、{x|0<x≤1}
D、R

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=
1
2x-3
的定义域为集合M,函数g(x)=log3(x-3)的定义域为集合N.求:
(Ⅰ)集合M,N;       
(Ⅱ) 集合M∩N,M∪N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(0°,45°),且5α的终边上有一点P(sin(-50°),cos130°),则α的值为(  )
A、8°B、26°
C、40°D、44°

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、Q为两个非空实数集合,定义集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2},Q={1,2,3},则P+Q=
 
.(用例举法表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:正四棱锥S-ABCD的棱长均为13,E,F分别是SA,BD上的点,且SE:EA=BF:FD=5:8.
(1)求证:EF∥平面SBC;
(2)求四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,
π
2
)上的函数f(x),f′(x)为其导函数,且f(x)<f′(x)•tanx恒成立,则(  )
A、
3
f(
π
4
)>
2
f(
π
3
B、
3
f(
π
6
)<f(
π
3
C、
2
f(
π
6
)>f(
π
4
D、f(1)<2f(
π
6
)•sin1

查看答案和解析>>

同步练习册答案