精英家教网 > 高中数学 > 题目详情
1.已知正项数列{an},a1=2,(an+1)an+2=1,a2=a6,则a11+a12=$\frac{1}{9}$+$\frac{\sqrt{5}}{2}$.

分析 正项数列{an},a1=2,(an+1)an+2=1,a2=a6,对n取值,利用递推关系即可得出.

解答 解:∵正项数列{an},a1=2,(an+1)an+2=1,a2=a6
∴3a3=1,(a2+1)a4=1,(a3+1)a5=1,(a4+1)a6=1,(a5+1)a7=1,(a6+1)a8=1,(a7+1)a9=1,(a8+1)a10=1,(a9+1)a11=1,(a10+1)a12=1.
∴a3=$\frac{1}{3}$,a5=$\frac{3}{4}$,a7=$\frac{4}{7}$,a9=$\frac{7}{11}$,a11=$\frac{11}{18}$,a2=a4=a6=$\frac{\sqrt{5}-1}{2}$=a8=a10=a12
则a11+a12=$\frac{11}{18}$+$\frac{\sqrt{5}-1}{2}$=$\frac{1}{9}$+$\frac{\sqrt{5}}{2}$.
故答案为:$\frac{1}{9}$+$\frac{\sqrt{5}}{2}$.

点评 本题考查了递推关系、数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.如图,是一个算法的程序框图,当输出的y值为2时,若将输入的x的所有可能值按从小到大的顺序排列得到一个数列{an},则该数列的通项公式为an=an=3n-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的正视图和侧(左)视图都是边长为2的正方体,俯视图是扇形,体积为2π,该几何体的表面积为(  )
A.8+4πB.4+4πC.8+2πD.4+2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数$\frac{2+i}{1-2i}$(  )
A.iB.-iC.4+2iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)的定义域为R,对任意x1<x2,有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>-1,且f(1)=1,则不等式f(log2|3x-1|)<2-log2|3x-1|的解集为(  )
A.(-∞,0)B.(-∞,1)C.(-1,0)∪(0,3)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知e为自然对数的底数,函数f(x)=$\left\{\begin{array}{l}{4x-4,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,则方程f(x)=ax恰有两个不同的实数解时,实数a的取值范围是(  )
A.(e,4]B.(4,+∞)C.(e,+∞)D.($\frac{1}{e}$,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知棱长为1的正方体ABCD-A1B1C1D1中,$\overrightarrow{AE}$=λ$\overrightarrow{AB}$,$\overrightarrow{{D_1}F}$=μ$\overrightarrow{{D_1}B}$,其中λ∈(0,1),μ∈(0,1),满足EF∥平面AA1D1D,则当三棱锥A-EFB1的体积最大时,λ+μ的值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在实数x1、x2、x3、x4满足,x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则x1•x2•(x3-2)•(x4-2)的取值范围是(  )
A.(4,16)B.(0,12)C.(9,21)D.(15,25)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题“?x∈(-1,+∞),ln(x+1)<x”的否定是(  )
A.?x∉(-1,+∞),ln(x+1)<xB.?x0∉(-1,+∞),ln(x0+1)<x0
C.?x∈(-1,+∞),ln(x+1)≥xD.?x0∈(-1,+∞),ln(x0+1)≥x0

查看答案和解析>>

同步练习册答案