| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |
分析 由已知向量等式得到M为△ABC 的重心,由此得到所求.
解答 解:由已知M是△ABC所在平面内一点,$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow 0$,
得到M为△ABC 的重心,则$\frac{{{S_{△ABC}}}}{{{S_{△MBC}}}}$=$\frac{\frac{1}{2}×BC×h}{\frac{1}{2}×BC×\frac{1}{3}h}$=3;
故选D.
点评 本题考查了向量的三角形法则、向量共线定理、三角形面积计算公式,考查了数形结合方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -1-2i | B. | -1+2i | C. | $\frac{11}{5}$+2i | D. | $\frac{11}{5}$-2i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<2} | B. | {x|1≤x<2} | C. | {x|x>0} | D. | {x|x≥1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com