精英家教网 > 高中数学 > 题目详情
已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s).
(1)当t=2,△t=0.01时,求
△s
△t
;   
(2))当t=2,△t=0.001时,求
△s
△t
;   
(3)当质点M在t=2时的瞬时速度.
考点:变化的快慢与变化率
专题:导数的概念及应用
分析:根据导数的物理意义,求函数的导数即可得到结论.
解答: 解:(1)当t=2,△t=0.01时,
△S
△t
=
2(2+0.01)2+3-2×22-3
0.01
=8.02
(2)当t=2,△t=0.001时,
△s
△t
=
2(2+0.001)2+3-2×22-3
0.001
=8.002
(3)∵s=2t2+3,
∴s′(t)=4t,
则质点在t=2秒时的瞬时速度为s′(2)=4×2=8.
点评:本题主要考查导数的计算,根据导数的物理意义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求定积分:
(1)
2
1
x2-2x-3
x
dx;
(2)
4
1
x
(1-
x
)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,首项a1=1,公比q>0,其前n项和为Sn,且S1+a1,S3+a3,S2+a2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足an+1=(
1
2
 anbn,Tn为数列{bn}的前n项和,若Tn≥m恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设随机变量ξ服从正态分布 N(μ,σ2),若方程x2+4x+ξ=0没有实根的概率是
1
2
,则μ=(  )
A、1B、2C、4D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
y≤x+2
x+y≤1
y≥ex-e
,则x-y+1的取值范围是(  )
A、[-2,2]
B、[-1,2]
C、[-2,e]
D、[-1,e]

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“已知a、b∈N+,如果ab可被 5 整除,那么a、b 中至少有一个能被 5 整除”时,假设的内容应为(  )
A、a、b 都能被5 整除
B、a、b 都不能被5 整除
C、a、b 不都能被5 整除
D、a 不能被5 整除

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个内角A,B,C所对的边长分别为a,b,c,设向量
p
=(sinB,a+c),
q
=(sinC-sinA,b-a).若?λ∈R,使
p
q
,则∠C的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
b
=(3,λ),若(2
a
-
b
)⊥
b
,则λ的值为(  )
A、3B、-1
C、-1或3D、-3或1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(π,2π),cosα=-
5
5
,tan2α=(  )
A、2
B、-2
C、
4
3
D、-
4
3

查看答案和解析>>

同步练习册答案