精英家教网 > 高中数学 > 题目详情
用反证法证明命题:“已知a、b∈N+,如果ab可被 5 整除,那么a、b 中至少有一个能被 5 整除”时,假设的内容应为(  )
A、a、b 都能被5 整除
B、a、b 都不能被5 整除
C、a、b 不都能被5 整除
D、a 不能被5 整除
考点:反证法
专题:推理和证明
分析:反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.
解答: 解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.
命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.
故选:B.
点评:反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
e
0
xdx=
e2
2
e
0
x3dx=
e4
4
,求下列定积分:
(1)
e
0
(2x+x3)dx;
(2)
e
0
(2x3-x+1)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=ex-x-2在下列那个区间必有零点(  )
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等比数列.
(1)若a2=2,a6=162,求a10
(2)若a1+a2=30,a3+a4=120,求a5+a6
(3)若a1a2a3…a30=230,求a2a5a8…a29

查看答案和解析>>

科目:高中数学 来源: 题型:

已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s).
(1)当t=2,△t=0.01时,求
△s
△t
;   
(2))当t=2,△t=0.001时,求
△s
△t
;   
(3)当质点M在t=2时的瞬时速度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,α∈(0,
π
2
),tanβ=
1
3

(1)求tanα的值;
(2)求tan(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,若△FPM为边长是12的等边三角形,则此抛物线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象,如图所示,f(0)=-
3
2
,则A的值是(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x2+y2+2x-4y-6=0表示的圆形是(  )
A、以(1,-2)为圆心,
11
为半径的圆
B、以(1,2)为圆心,
11
为半径的圆
C、以(-1,-2)为圆心,
11
为半径的圆
D、以(-1,2)为圆心,
11
为半径的圆

查看答案和解析>>

同步练习册答案