精英家教网 > 高中数学 > 题目详情
△ABC的三个内角A,B,C所对的边长分别为a,b,c,设向量
p
=(sinB,a+c),
q
=(sinC-sinA,b-a).若?λ∈R,使
p
q
,则∠C的大小为
 
考点:正弦定理,平行向量与共线向量,余弦定理
专题:解三角形
分析:利用向量共线定理、正弦定理、余弦定理即可得出.
解答: 解:∵?λ∈R,使
p
q

∴(a+c)(sinC-sinA)=(b-a)sinB,
∴(a+c)(c-a)=(b-a)b,
∴a2+b2-c2=ab.
cosC=
a2+b2-c2
2ab
=
1
2

∵C∈(0,π),
C=
π
3

故答案为:
π
3
点评:本题考查了余弦定理、正弦定理、向量共线定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若P是长度为6的线段AB上任意一点,则点P到线段AB两端距离均不小于1的概率(  )
A、
5
6
B、
2
3
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在平面四边形ABCD中,AB=4,AD=2,∠DAB=60°,∠BCD=120°.
(1)当BC=CD时,求△BCD的面积;
(2)设∠CDB=θ,记四边形ABCD的周长为f(θ),求f(θ)的方程,并求出它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s).
(1)当t=2,△t=0.01时,求
△s
△t
;   
(2))当t=2,△t=0.001时,求
△s
△t
;   
(3)当质点M在t=2时的瞬时速度.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.
(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ21的值;
(2)在“A 类波“中有一个是f1(x)=Asinx,从 A类波中再找出两个不同的波f2(x),f3(x),使得这三个不同的波叠加之后是平波,即叠加后f1(x)+f2(x)+f3(x),并说明理由.
(3)在n(n∈N,n≥2)个“A类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,若△FPM为边长是12的等边三角形,则此抛物线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的(  )
A、必要不充分条件
B、充分不必要条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数y=x+k(k∈Z)的图象与二次函数y=x2的图象交于A,B两点,O为坐标原点,求:
(1)
OA
OB
的数量积;
(2)当k为何值时
OA
OB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,则复数
2
1-i
等于(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

同步练习册答案